IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v15y2013i1p89-113.html
   My bibliography  Save this article

Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach

Author

Listed:
  • Jane Law
  • Matthew Quick

Abstract

This paper adopts a Bayesian spatial modeling approach to investigate the distribution of young offender residences in York Region, Southern Ontario, Canada, at the census dissemination area level. Few geographic researches have analyzed offender (as opposed to offense) data at a large map scale (i.e., using a relatively small areal unit of analysis) to minimize aggregation effects. Providing context is the social disorganization theory, which hypothesizes that areas with economic deprivation, high population turnover, and high ethnic heterogeneity exhibit social disorganization and are expected to facilitate higher instances of young offenders. Non-spatial and spatial Poisson models indicate that spatial methods are superior to non-spatial models with respect to model fit and that index of ethnic heterogeneity, residential mobility (1 year moving rate), and percentage of residents receiving government transfer payments are, respectively, the most significant explanatory variables related to young offender location. These findings provide overwhelming support for social disorganization theory as it applies to offender location in York Region, Ontario. Targeting areas where prevalence of young offenders could or could not be explained by social disorganization through decomposing the estimated risk map are helpful for dealing with juvenile offenders in the region. Results prompt discussion into geographically targeted police services and young offender placement pertaining to risk of recidivism. We discuss possible reasons for differences and similarities between the previous findings (that analyzed offense data and/or were conducted at a smaller map scale) and our findings, limitations of our study, and practical outcomes of this research from a law enforcement perspective. Copyright Springer-Verlag 2013

Suggested Citation

  • Jane Law & Matthew Quick, 2013. "Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach," Journal of Geographical Systems, Springer, vol. 15(1), pages 89-113, January.
  • Handle: RePEc:kap:jgeosy:v:15:y:2013:i:1:p:89-113
    DOI: 10.1007/s10109-012-0164-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-012-0164-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-012-0164-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. David Wheeler & Lance Waller, 2009. "Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests," Journal of Geographical Systems, Springer, vol. 11(1), pages 1-22, March.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. J. H. Ratcliffe & M. J. McCullagh, 1999. "Hotbeds of crime and the search for spatial accuracy," Journal of Geographical Systems, Springer, vol. 1(4), pages 385-398, December.
    6. A. Hirschfield & K.J. Bowers, 1997. "The Effect of Social Cohesion on Levels of Recorded Crime in Disadvantaged Areas," Urban Studies, Urban Studies Journal Limited, vol. 34(8), pages 1275-1295, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrique Gracia & Antonio López-Quílez & Miriam Marco & Silvia Lladosa & Marisol Lila, 2014. "Exploring Neighborhood Influences on Small-Area Variations in Intimate Partner Violence Risk: A Bayesian Random-Effects Modeling Approach," IJERPH, MDPI, vol. 11(1), pages 1-17, January.
    2. Jane Law & Matthew Quick & Ping Chan, 2016. "Open area and road density as land use indicators of young offender residential locations at the small-area level: A case study in Ontario, Canada," Urban Studies, Urban Studies Journal Limited, vol. 53(8), pages 1710-1726, June.
    3. Miriam Marco & Antonio López-Quílez & David Conesa & Enrique Gracia & Marisol Lila, 2017. "Spatio-Temporal Analysis of Suicide-Related Emergency Calls," IJERPH, MDPI, vol. 14(7), pages 1-13, July.
    4. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Mehdipoor, Hamed & Darvishzadeh, Roshanak & Ngene, Shadrack & Vrieling, Anton & Toxopeus, Albertus G., 2016. "Elephant poaching risk assessed using spatial and non-spatial Bayesian models," Ecological Modelling, Elsevier, vol. 338(C), pages 60-68.
    5. Miriam Marco & Enrique Gracia & Antonio López-Quílez & Marisol Lila, 2021. "The Spatial Overlap of Police Calls Reporting Street-Level and Behind-Closed-Doors Crime: A Bayesian Modeling Approach," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    6. Salma Hamza & Imran Khan & Linlin Lu & Hua Liu & Farkhunda Burke & Syed Nawaz-ul-Huda & Muhammad Fahad Baqa & Aqil Tariq, 2021. "The Relationship between Neighborhood Characteristics and Homicide in Karachi, Pakistan," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
    7. Matthew Quick, 2019. "Multiscale spatiotemporal patterns of crime: a Bayesian cross-classified multilevel modelling approach," Journal of Geographical Systems, Springer, vol. 21(3), pages 339-365, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quick, Matthew & Li, Guangquan & Brunton-Smith, Ian, 2018. "Crime-general and crime-specific spatial patterns: A multivariate spatial analysis of four crime types at the small-area scale," Journal of Criminal Justice, Elsevier, vol. 58(C), pages 22-32.
    2. Robert Haining & Jane Law, 2007. "Combining police perceptions with police records of serious crime areas: a modelling approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1019-1034, October.
    3. Rashidi, Parinaz & Wang, Tiejun & Skidmore, Andrew & Mehdipoor, Hamed & Darvishzadeh, Roshanak & Ngene, Shadrack & Vrieling, Anton & Toxopeus, Albertus G., 2016. "Elephant poaching risk assessed using spatial and non-spatial Bayesian models," Ecological Modelling, Elsevier, vol. 338(C), pages 60-68.
    4. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    5. Miriam Marco & Antonio López-Quílez & David Conesa & Enrique Gracia & Marisol Lila, 2017. "Spatio-Temporal Analysis of Suicide-Related Emergency Calls," IJERPH, MDPI, vol. 14(7), pages 1-13, July.
    6. Daqian Liu & Wei Song & Chunliang Xiu & Jun Xu, 2021. "Understanding the Spatiotemporal Pattern of Crimes in Changchun, China: A Bayesian Modeling Approach," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    7. Haining, Robert & Law, Jane & Griffith, Daniel, 2009. "Modelling small area counts in the presence of overdispersion and spatial autocorrelation," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2923-2937, June.
    8. Matthew Quick, 2019. "Multiscale spatiotemporal patterns of crime: a Bayesian cross-classified multilevel modelling approach," Journal of Geographical Systems, Springer, vol. 21(3), pages 339-365, September.
    9. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    10. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    11. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    12. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    13. Francisca Corpas-Burgos & Miguel A. Martinez-Beneito, 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting," Mathematics, MDPI, vol. 9(4), pages 1-17, February.
    14. Li Xu & Qingshan Jiang & David R. Lairson, 2019. "Spatio-Temporal Variation of Gender-Specific Hypertension Risk: Evidence from China," IJERPH, MDPI, vol. 16(22), pages 1-26, November.
    15. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    16. F. Corpas-Burgos & P. Botella-Rocamora & M. A. Martinez-Beneito, 2019. "On the convenience of heteroscedasticity in highly multivariate disease mapping," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1229-1250, December.
    17. Alexandra Schmidt & Ajax Moreira & Steven Helfand & Thais Fonseca, 2009. "Spatial stochastic frontier models: accounting for unobserved local determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 31(2), pages 101-112, April.
    18. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    19. Marc Marí-Dell’Olmo & Miguel Ángel Martínez-Beneito, 2015. "A Multilevel Regression Model for Geographical Studies in Sets of Non-Adjacent Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-12, August.
    20. Peter Congdon, 2011. "The Spatial Pattern of Suicide in the US in Relation to Deprivation, Fragmentation and Rurality," Urban Studies, Urban Studies Journal Limited, vol. 48(10), pages 2101-2122, August.

    More about this item

    Keywords

    Young offender/juvenile delinquency; Bayesian spatial modeling; Spatial poisson regression; Social disorganization; Ethnic heterogeneity; C11; C31; R23;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • R23 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Household Analysis - - - Regional Migration; Regional Labor Markets; Population

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:15:y:2013:i:1:p:89-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.