IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v23y2014i1p71-94.html
   My bibliography  Save this article

Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)

Author

Listed:
  • Massimo Bilancia
  • Giacomo Demarinis

Abstract

Among the many tools suited to detect local clusters in group-level data, Kulldorff–Nagarwalla’s spatial scan statistic gained wide popularity (Kulldorff and Nagarwalla in Stat Med 14(8):799–810, 1995 ). The underlying assumptions needed for making statistical inference feasible are quite strong, as counts in spatial units are assumed to be independent Poisson distributed random variables. Unfortunately, outcomes in spatial units are often not independent of each other, and risk estimates of areas that are close to each other will tend to be positively correlated as they share a number of spatially varying characteristics. We therefore introduce a Bayesian model-based algorithm for cluster detection in the presence of spatially autocorrelated relative risks. Our approach has been made possible by the recent development of new numerical methods based on integrated nested Laplace approximation, by which we can directly compute very accurate approximations of posterior marginals within short computational time (Rue et al. in JRSS B 71(2):319–392, 2009 ). Simulated data and a case study show that the performance of our method is at least comparable to that of Kulldorff–Nagarwalla’s statistic. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
  • Handle: RePEc:spr:stmapp:v:23:y:2014:i:1:p:71-94
    DOI: 10.1007/s10260-013-0241-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10260-013-0241-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10260-013-0241-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    2. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    3. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarno Vanhatalo & Scott D. Foster & Geoffrey R. Hosack, 2021. "Spatiotemporal clustering using Gaussian processes embedded in a mixture model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    2. Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
    3. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    4. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    5. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    6. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    7. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    8. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    9. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    10. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.
    11. Kassahun Abere Ayalew & Samuel Manda & Bo Cai, 2021. "A Comparison of Bayesian Spatial Models for HIV Mapping in South Africa," IJERPH, MDPI, vol. 18(21), pages 1-10, October.
    12. Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
    13. Xing Zhao & Mingqin Cao & Hai-Huan Feng & Heng Fan & Fei Chen & Zijian Feng & Xiaosong Li & Xiao-Hua Zhou, 2014. "Japanese Encephalitis Risk and Contextual Risk Factors in Southwest China: A Bayesian Hierarchical Spatial and Spatiotemporal Analysis," IJERPH, MDPI, vol. 11(4), pages 1-17, April.
    14. Daqian Liu & Wei Song & Chunliang Xiu & Jun Xu, 2021. "Understanding the Spatiotemporal Pattern of Crimes in Changchun, China: A Bayesian Modeling Approach," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    15. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    16. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.
    17. Adeniyi, Isaac Adeola & Yahya, Waheed Babatunde, 2020. "Bayesian Generalized Linear Mixed Effects Models Using Normal-Independent Distributions: Formulation and Applications," MPRA Paper 99165, University Library of Munich, Germany.
    18. Chien-Chou Chen & Guo-Jun Lo & Ta-Chien Chan, 2022. "Spatial Analysis on Supply and Demand of Adult Surgical Masks in Taipei Metropolitan Areas in the Early Phase of the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-12, May.
    19. Marc Francke & Alex Van de Minne, 2021. "Modeling unobserved heterogeneity in hedonic price models," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(4), pages 1315-1339, December.
    20. Mabel Morales-Otero & Vicente Núñez-Antón, 2021. "Comparing Bayesian Spatial Conditional Overdispersion and the Besag–York–Mollié Models: Application to Infant Mortality Rates," Mathematics, MDPI, vol. 9(3), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:23:y:2014:i:1:p:71-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.