IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i23p12320-d686414.html
   My bibliography  Save this article

Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain

Author

Listed:
  • Isabel Martínez-Pérez

    (IUOPA-Área de Medicina Preventiva y Salud Pública, Departamento de Medicina, Universidad de Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain)

  • Verónica González-Iglesias

    (IUOPA-Área de Medicina Preventiva y Salud Pública, Departamento de Medicina, Universidad de Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain)

  • Valentín Rodríguez Suárez

    (Dirección General de Salud Pública, Consejería de Salud, Principado de Asturias, C/Ciriaco Miguel Vigil, 9, 33006 Oviedo, Spain)

  • Ana Fernández-Somoano

    (IUOPA-Área de Medicina Preventiva y Salud Pública, Departamento de Medicina, Universidad de Oviedo, C/Julián Clavería s/n, 33006 Oviedo, Spain
    CIBER Epidemiología y Salud Pública (CIBERESP)—Instituto de Salud Carlos III, Monforte de Lemos Avenue, 3-5, 28029 Madrid, Spain
    Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001 Oviedo, Spain)

Abstract

Hospitalizations for ischemic heart disease have an uneven distribution throughout Spain, in which Asturias is the community with the highest rates of acute myocardial infarction (AMI) and angina pectoris (AP). Cardiovascular diseases are related to environmental, socioeconomic and previous medical conditions, which result in geographical differences in the incidence of hospital admissions and mortality. The goal of this study was to describe the spatial distribution of hospital admissions in the central area of Asturias and explore the existence of spatial patterns or clusters. Urgent hospital admissions for AMI and angina AP in the hospitals of the central area of Asturias were registered, geocoded and grouped by census tracts. Standardized admission ratio, smoothed relative risk, posterior risk probability and analysis of spatial clusters between relative risks throughout the study area were calculated and mapped. Geographical differences were found in the distribution of hospital admissions for AMI and AP across the area and between men and women. The cluster analysis indicated contiguous census tracts with high relative risk values in the northwest region of the study area and low relative risk in the east, particularly for men. The geographical analysis shows the existence of patterns and spatial clusters in the incidence of AMI and AP, for both men and women, in the central area of Asturias.

Suggested Citation

  • Isabel Martínez-Pérez & Verónica González-Iglesias & Valentín Rodríguez Suárez & Ana Fernández-Somoano, 2021. "Spatial Distribution of Hospitalizations for Ischemic Heart Diseases in the Central Region of Asturias, Spain," IJERPH, MDPI, vol. 18(23), pages 1-10, November.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12320-:d:686414
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/23/12320/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/23/12320/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    2. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    3. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    4. Maike Tahden & Juliane Manitz & Klaus Baumgardt & Gerhard Fell & Thomas Kneib & Guido Hegasy, 2016. "Epidemiological and Ecological Characterization of the EHEC O104:H4 Outbreak in Hamburg, Germany, 2011," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-19, October.
    5. Darren J. Mayne & Geoffrey G. Morgan & Bin B. Jalaludin & Adrian E. Bauman, 2018. "Does Walkability Contribute to Geographic Variation in Psychosocial Distress? A Spatial Analysis of 91,142 Members of the 45 and Up Study in Sydney, Australia," IJERPH, MDPI, vol. 15(2), pages 1-24, February.
    6. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
    7. Faustin Habyarimana & Temesgen Zewotir & Shaun Ramroop, 2017. "Structured Additive Quantile Regression for Assessing the Determinants of Childhood Anemia in Rwanda," IJERPH, MDPI, vol. 14(6), pages 1-15, June.
    8. Medina-Olivares, Victor & Calabrese, Raffaella & Dong, Yizhe & Shi, Baofeng, 2022. "Spatial dependence in microfinance credit default," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1071-1085.
    9. Yang, Anni & Liu, Chenhui & Yang, Di & Lu, Chaoru, 2023. "Electric vehicle adoption in a mature market: A case study of Norway," Journal of Transport Geography, Elsevier, vol. 106(C).
    10. Ropo E. Ogunsakin & Themba G. Ginindza, 2022. "Bayesian Spatial Modeling of Diabetes and Hypertension: Results from the South Africa General Household Survey," IJERPH, MDPI, vol. 19(15), pages 1-17, July.
    11. Panczak, Radoslaw & Moser, André & Held, Leonhard & Jones, Philip A. & Rühli, Frank J. & Staub, Kaspar, 2017. "A tall order: Small area mapping and modelling of adult height among Swiss male conscripts," Economics & Human Biology, Elsevier, vol. 26(C), pages 61-69.
    12. Shota Homma & Daisuke Murakami & Shinya Hosokawa & Koji Kanefuji, 2025. "Introduction risk of fire ants through container cargo in ports: Data integration approach considering a logistic network," PLOS ONE, Public Library of Science, vol. 20(2), pages 1-15, February.
    13. I. Gede Nyoman M. Jaya & Henk Folmer, 2021. "Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with application to West Java Province, Indonesia," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 849-881, September.
    14. I Gede Nyoman Mindra Jaya & Henk Folmer & Johan Lundberg, 2024. "A joint Bayesian spatiotemporal risk prediction model of COVID-19 incidence, IC admission, and death with application to Sweden," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 72(1), pages 107-140, January.
    15. Virgilio Gómez-Rubio & Roger S. Bivand & Håvard Rue, 2021. "Estimating Spatial Econometrics Models with Integrated Nested Laplace Approximation," Mathematics, MDPI, vol. 9(17), pages 1-23, August.
    16. Xing Zhao & Mingqin Cao & Hai-Huan Feng & Heng Fan & Fei Chen & Zijian Feng & Xiaosong Li & Xiao-Hua Zhou, 2014. "Japanese Encephalitis Risk and Contextual Risk Factors in Southwest China: A Bayesian Hierarchical Spatial and Spatiotemporal Analysis," IJERPH, MDPI, vol. 11(4), pages 1-17, April.
    17. Daqian Liu & Wei Song & Chunliang Xiu & Jun Xu, 2021. "Understanding the Spatiotemporal Pattern of Crimes in Changchun, China: A Bayesian Modeling Approach," Sustainability, MDPI, vol. 13(19), pages 1-15, September.
    18. Exaverio Chireshe & Retius Chifurira & Knowledge Chinhamu & Jesca Mercy Batidzirai & Ayesha B. M. Kharsany, 2025. "Spatial Analysis of HIV Determinants Among Females Aged 15–34 in KwaZulu Natal, South Africa: A Bayesian Spatial Logistic Regression Model," IJERPH, MDPI, vol. 22(3), pages 1-25, March.
    19. Luca Grassetti & Laura Rizzi, 2019. "The determinants of individual health care expenditures in the Italian region of Friuli Venezia Giulia: evidence from a hierarchical spatial model estimation," Empirical Economics, Springer, vol. 56(3), pages 987-1009, March.
    20. I. Gede Nyoman Mindra Jaya & Henk Folmer, 2020. "Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, Indonesia," Journal of Geographical Systems, Springer, vol. 22(1), pages 105-142, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:23:p:12320-:d:686414. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.