Mutual Fund Selection Strategies Based on Machine Learning
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-024-10766-3
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021.
"Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence],"
The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
- Daniele Bianchi & Matthias Büchner & Tobias Hoogteijling & Andrea Tamoni, 2021. "Corrigendum: Bond Risk Premiums with Machine Learning [Bond risk premiums with machine learning]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1090-1103.
- Rachev, Svetlozar & Jasic, Teo & Stoyanov, Stoyan & Fabozzi, Frank J., 2007. "Momentum strategies based on reward-risk stock selection criteria," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2325-2346, August.
- Javier Oliver Muncharaz, 2020. "Comparing classic time series models and the LSTM recurrent neural network: An application to S&P 500 stocks [Comparativa de los models clásicos de series temporales con la red neuronal recurrente ," Post-Print hal-03149342, HAL.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Taylor, Nick, 2014. "The rise and fall of technical trading rule success," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 286-302.
- Zhu, Pengfei & Tang, Yong & Wei, Yu & Dai, Yimin & Lu, Tuantuan, 2021. "Relationships and portfolios between oil and Chinese stock sectors: A study based on wavelet denoising-higher moments perspective," Energy, Elsevier, vol. 217(C).
- Wang, Kejun & Qi, Xiaoxia & Liu, Hongda & Song, Jiakang, 2018. "Deep belief network based k-means cluster approach for short-term wind power forecasting," Energy, Elsevier, vol. 165(PA), pages 840-852.
- Jia Li & Zhipeng Liao & Rogier Quaedvlieg, 2022. "Conditional Superior Predictive Ability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 89(2), pages 843-875.
- Attila Ceffer & Janos Levendovszky & Norbert Fogarasi, 2019. "Applying Independent Component Analysis and Predictive Systems for Algorithmic Trading," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 281-303, June.
- Ko, Kuan-Cheng & Lin, Shinn-Juh & Su, Hsiang-Ju & Chang, Hsing-Hua, 2014. "Value investing and technical analysis in Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 14-36.
- Lin, Qi, 2018. "Technical analysis and stock return predictability: An aligned approach," Journal of Financial Markets, Elsevier, vol. 38(C), pages 103-123.
- Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Forecasting stock return distributions around the globe with quantile neural networks," Papers 2408.07497, arXiv.org, revised Aug 2025.
- Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
- Ioannis D Vrontos & Loukia Meligkotsidou & Spyridon D Vrontos, 2011. "Performance evaluation of mutual fund investments: The impact of non-normality and time-varying volatility," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 292-307, September.
- Choi, Jaewon & Richardson, Matthew, 2016. "The volatility of a firm's assets and the leverage effect," Journal of Financial Economics, Elsevier, vol. 121(2), pages 254-277.
- Benjamin R. Auer, 2021. "Have trend-following signals in commodity futures markets become less reliable in recent years?," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 35(4), pages 533-553, December.
- F. DePenya & L. Gil-Alana, 2006.
"Testing of nonstationary cycles in financial time series data,"
Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
- Javier De Peña & Luis A. Gil-Alana, 2003. "Testing of Nonstationary Cycles in Financial Time Series Data," Faculty Working Papers 15/03, School of Economics and Business Administration, University of Navarra.
- Guillaume Coqueret, 2016. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02088097, HAL.
- Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2013.
"Time-varying beta: a boundedly rational equilibrium approach,"
Journal of Evolutionary Economics, Springer, vol. 23(3), pages 609-639, July.
- Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2010. "Time-Varying Beta: A Boundedly Rational Equilibrium Approach," Research Paper Series 275, Quantitative Finance Research Centre, University of Technology, Sydney.
- Souropanis, Ioannis & Vivian, Andrew, 2023. "Forecasting realized volatility with wavelet decomposition," Journal of Empirical Finance, Elsevier, vol. 74(C).
- Chen, Xiaoyu & Chiang, Thomas C., 2016. "Stock returns and economic forces—An empirical investigation of Chinese markets," Global Finance Journal, Elsevier, vol. 30(C), pages 45-65.
- Frode Kjærland & Aras Khazal & Erlend A. Krogstad & Frans B. G. Nordstrøm & Are Oust, 2018. "An Analysis of Bitcoin’s Price Dynamics," JRFM, MDPI, vol. 11(4), pages 1-18, October.
- Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
- Guillaume Coqueret, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Post-Print hal-02000726, HAL.
- Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
- Byun, Sung Je, 2016. "The usefulness of cross-sectional dispersion for forecasting aggregate stock price volatility," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 162-180.
- De Nard, Gianluca & Engle, Robert F. & Ledoit, Olivier & Wolf, Michael, 2022.
"Large dynamic covariance matrices: Enhancements based on intraday data,"
Journal of Banking & Finance, Elsevier, vol. 138(C).
- Gianluca De Nard & Robert F. Engle & Olivier Ledoit & Michael Wolf, 2020. "Large dynamic covariance matrices: enhancements based on intraday data," ECON - Working Papers 356, Department of Economics - University of Zurich, revised Jan 2022.
- Shi, Huai-Long & Zhou, Wei-Xing, 2017.
"Wax and wane of the cross-sectional momentum and contrarian effects: Evidence from the Chinese stock markets,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 397-407.
- H. -L. Shi & W. -X. Zhou, 2017. "Wax and wane of the cross-sectional momentum and contrarian effects: Evidence from the Chinese stock markets," Papers 1707.05552, arXiv.org.
- Siddique, Maryam, 2023. "Does the Adaptive Market Hypothesis Exist in Equity Market? Evidence from Pakistan Stock Exchange," OSF Preprints 9b5dx, Center for Open Science.
- Yeguang Chi & Xiao Qiao & Sibo Yan & Binbin Deng, 2021. "Volatility and returns: Evidence from China†," International Review of Finance, International Review of Finance Ltd., vol. 21(4), pages 1441-1463, December.
- Coqueret, Guillaume, 2017. "Empirical properties of a heterogeneous agent model in large dimensions," Journal of Economic Dynamics and Control, Elsevier, vol. 77(C), pages 180-201.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:3:d:10.1007_s10614-024-10766-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/kap/compec/v66y2025i3d10.1007_s10614-024-10766-3.html