IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v64y2024i2d10.1007_s10614-023-10455-7.html
   My bibliography  Save this article

Opinion Dynamics with Preference Matching: How the Desire to Meet Facilitates Opinion Exchange

Author

Listed:
  • Mitja Steinbacher

    (Catholic Institute)

  • Matjaž Steinbacher

    (Fund for Financing the Decommissioning of the Krško Nuclear Power Plant and Disposal of Radioactive Waste)

  • Clemens Knoppe

    (Kiel University)

Abstract

The paper reexamines an agent-based model of opinion formation under bounded confidence with heterogeneous agents. The paper is novel in that it extends the standard model of opinion dynamics with the assumption that interacting agents share the desire to exchange opinion. In particular, the interaction between agents in the paper is modeled via a dynamic preferential-matching process wherein agents reveal their preferences to meet according to three features: coherence, opinion difference, and agents’ positive sentiments towards others. Only preferred matches meet and exchange opinion. Through an extensive series of simulation treatments, it follows that the presence of sentiments, on one hand, hardens the matching process between agents, which leads to less communication. But, on the other hand, it increases the diversity in preferred matches between agents and thereby leads to a better-integrated social network structure, which reflects in a reduction of the opinion variance between agents. Moreover, at combinations of (a) high tolerance, (b) low sensitivity of agents to opinion volatility, and (c) low levels of confidence, agents are occasionally drawn away from the consensus, forming small groups that hold extreme opinions.

Suggested Citation

  • Mitja Steinbacher & Matjaž Steinbacher & Clemens Knoppe, 2024. "Opinion Dynamics with Preference Matching: How the Desire to Meet Facilitates Opinion Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 735-768, August.
  • Handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10455-7
    DOI: 10.1007/s10614-023-10455-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-023-10455-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-023-10455-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Lorenz, 2007. "Continuous Opinion Dynamics Under Bounded Confidence: A Survey," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 18(12), pages 1819-1838.
    2. Edward L. Glaeser & Bruce Sacerdote & José A. Scheinkman, 1996. "Crime and Social Interactions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 111(2), pages 507-548.
    3. Levy, Gilat & Razin, Ronny, 2019. "Echo chambers and their effects on economic and political outcomes," LSE Research Online Documents on Economics 101413, London School of Economics and Political Science, LSE Library.
    4. Dutta, Bhaskar & Sen, Arunava, 2012. "Nash implementation with partially honest individuals," Games and Economic Behavior, Elsevier, vol. 74(1), pages 154-169.
    5. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    6. Zhengzheng Pan, 2012. "Opinions and Networks: How Do They Effect Each Other," Computational Economics, Springer;Society for Computational Economics, vol. 39(2), pages 157-171, February.
    7. J. J. McCall, 1970. "Economics of Information and Job Search," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 84(1), pages 113-126.
    8. Haibo Hu & Jonathan J. H. Zhu, 2017. "Social networks, mass media and public opinions," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 393-411, July.
    9. Wenbo Zou & Xue Xu, 2023. "Ingroup bias in a social learning experiment," Experimental Economics, Springer;Economic Science Association, vol. 26(1), pages 27-54, March.
    10. Gilat Levy & Ronny Razin, 2019. "Echo Chambers and Their Effects on Economic and Political Outcomes," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 303-328, August.
    11. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    12. Buechel, Berno & Hellmann, Tim & Pichler, Michael M., 2014. "The dynamics of continuous cultural traits in social networks," Journal of Economic Theory, Elsevier, vol. 154(C), pages 274-309.
    13. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    14. Benjamin Golub & Matthew O. Jackson, 2010. "Naïve Learning in Social Networks and the Wisdom of Crowds," American Economic Journal: Microeconomics, American Economic Association, vol. 2(1), pages 112-149, February.
    15. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    16. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    17. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    18. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    19. Acemoglu, Daron & Ozdaglar, Asuman & ParandehGheibi, Ali, 2010. "Spread of (mis)information in social networks," Games and Economic Behavior, Elsevier, vol. 70(2), pages 194-227, November.
    20. Daron Acemoğlu & Giacomo Como & Fabio Fagnani & Asuman Ozdaglar, 2013. "Opinion Fluctuations and Disagreement in Social Networks," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 1-27, February.
    21. Felipe Arteaga & Adam J Kapor & Christopher A Neilson & Seth D Zimmerman, 2022. "Smart Matching Platforms and Heterogeneous Beliefs in Centralized School Choice," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 137(3), pages 1791-1848.
    22. Veronika Grimm & Friederike Mengel, 2020. "Experiments on Belief Formation in Networks," Journal of the European Economic Association, European Economic Association, vol. 18(1), pages 49-82.
    23. Rachel E. Kranton & Deborah F. Minehart, 2001. "A Theory of Buyer-Seller Networks," American Economic Review, American Economic Association, vol. 91(3), pages 485-508, June.
    24. Alvin E. Roth, 1982. "The Economics of Matching: Stability and Incentives," Mathematics of Operations Research, INFORMS, vol. 7(4), pages 617-628, November.
    25. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    26. Joshua M. Epstein & Robert L. Axtell, 1996. "Growing Artificial Societies: Social Science from the Bottom Up," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262550253, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    2. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    3. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    4. Rusinowska, Agnieszka & Taalaibekova, Akylai, 2019. "Opinion formation and targeting when persuaders have extreme and centrist opinions," Journal of Mathematical Economics, Elsevier, vol. 84(C), pages 9-27.
    5. Michel Grabisch & Antoine Mandel & Agnieszka Rusinowska & Emily Tanimura, 2015. "Strategic influence in social networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01158168, HAL.
    6. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    7. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    8. Hai-Bo Hu & Cang-Hai Li & Qing-Ying Miao, 2017. "Opinion Diffusion On Multilayer Social Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(06n07), pages 1-25, September.
    9. Hu, Haibo & Chen, Wenhao & Hu, Yixuan, 2024. "Opinion dynamics in social networks under the influence of mass media," Applied Mathematics and Computation, Elsevier, vol. 482(C).
    10. Christos Mavridis & Nikolas Tsakas, 2021. "Social Capital, Communication Channels and Opinion Formation," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 635-678, May.
    11. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    12. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    13. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    14. Fang, Aili, 2021. "The influence of communication structure on opinion dynamics in social networks with multiple true states," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    15. Castro, Luis E. & Shaikh, Nazrul I., 2018. "A particle-learning-based approach to estimate the influence matrix of online social networks," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 1-18.
    16. Pérez-Martínez, H. & Bauzá Mingueza, F. & Soriano-Paños, D. & Gómez-Gardeñes, J. & Floría, L.M., 2023. "Polarized opinion states in static networks driven by limited information horizons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    17. Akylai Taalaibekova, 2018. "Opinion formation in social networks," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 85-108.
    18. Patrick Mellacher, 2021. "Opinion Dynamics with Conflicting Interests," Papers 2111.09408, arXiv.org.
    19. Muhammad Umar B. Niazi & A. Bülent Özgüler, 2021. "A Differential Game Model of Opinion Dynamics: Accord and Discord as Nash Equilibria," Dynamic Games and Applications, Springer, vol. 11(1), pages 137-160, March.
    20. Liu, Qipeng & Wang, Xiaofan, 2013. "Social learning with bounded confidence and heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2368-2374.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:64:y:2024:i:2:d:10.1007_s10614-023-10455-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.