IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2507.13767.html
   My bibliography  Save this paper

Navigating the Lobbying Landscape: Insights from Opinion Dynamics Models

Author

Listed:
  • Daniele Giachini
  • Leonardo Ciambezi
  • Verdiana Del Rosso
  • Fabrizio Fornari
  • Valentina Pansanella
  • Lilit Popoyan
  • Alina S^irbu

Abstract

While lobbying has been demonstrated to have an important effect on public opinion and policy making, existing models of opinion formation do not specifically include its effect. In this work we introduce a new model of opinion dynamics where lobbyists can implement complex strategies and are characterised by a finite budget. Individuals update their opinions through a learning process resembling Bayesian learning, but influenced by cognitive biases such as under-reaction and confirmation bias. We study the model numerically and demonstrate rich dynamics both with and without lobbyists. In the presence of lobbying, we observe two regimes: one in which lobbyists can have full influence on the agent network, and another where the peer-effect generates polarisation. When symmetric lobbyists are present, the lobbyist influence regime is characterised by long opinion oscillations, while in the transition area between the two regimes we observe convergence to the optimistic model when the lobbying influence is long enough. These rich dynamics pave the way for studying real lobbying strategies to validate the model in practice.

Suggested Citation

  • Daniele Giachini & Leonardo Ciambezi & Verdiana Del Rosso & Fabrizio Fornari & Valentina Pansanella & Lilit Popoyan & Alina S^irbu, 2025. "Navigating the Lobbying Landscape: Insights from Opinion Dynamics Models," Papers 2507.13767, arXiv.org, revised Jul 2025.
  • Handle: RePEc:arx:papers:2507.13767
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2507.13767
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bardoscia, Marco & Carro, Adrian & Hinterschweiger, Marc & Napoletano, Mauro & Popoyan, Lilit & Roventini, Andrea & Uluc, Arzu, 2025. "The impact of prudential regulation on the UK housing market and economy: Insights from an agent-based model," Journal of Economic Behavior & Organization, Elsevier, vol. 229(C).
    2. Bottazzi, Giulio & Giachini, Daniele & Ottaviani, Matteo, 2023. "Market selection and learning under model misspecification," Journal of Economic Dynamics and Control, Elsevier, vol. 156(C).
    3. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    4. Giorgio Fagiolo & Andrea Roventini, 2017. "Macroeconomic Policy in DSGE and Agent-Based Models Redux: New Developments and Challenges Ahead," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 20(1), pages 1-1.
    5. Guillaume Deffuant & Frederic Amblard & Gérard Weisbuch, 2002. "How Can Extremism Prevail? a Study Based on the Relative Agreement Interaction Model," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(4), pages 1-1.
    6. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    7. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    8. Andrew G. Haldane & Arthur E. Turrell, 2019. "Drawing on different disciplines: macroeconomic agent-based models," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 39-66, March.
    9. Sushil Bikhchandani & David Hirshleifer & Ivo Welch, 1998. "Learning from the Behavior of Others: Conformity, Fads, and Informational Cascades," Journal of Economic Perspectives, American Economic Association, vol. 12(3), pages 151-170, Summer.
    10. Leah C. Stokes & Christopher Warshaw, 2017. "Renewable energy policy design and framing influence public support in the United States," Nature Energy, Nature, vol. 2(8), pages 1-6, August.
    11. James N. Druckman & Mary C. McGrath, 2019. "The evidence for motivated reasoning in climate change preference formation," Nature Climate Change, Nature, vol. 9(2), pages 111-119, February.
    12. Epstein Larry G & Noor Jawwad & Sandroni Alvaro, 2010. "Non-Bayesian Learning," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 10(1), pages 1-20, January.
    13. Li, Tingyu & Zhu, Hengmin, 2020. "Effect of the media on the opinion dynamics in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    14. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    15. Duncan J. Watts & Peter Sheridan Dodds, 2007. "Influentials, Networks, and Public Opinion Formation," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 34(4), pages 441-458, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    2. Mitja Steinbacher & Matjaž Steinbacher & Clemens Knoppe, 2024. "Opinion Dynamics with Preference Matching: How the Desire to Meet Facilitates Opinion Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 735-768, August.
    3. Matjaž Steinbacher & Mitja Steinbacher, 2019. "Opinion Formation with Imperfect Agents as an Evolutionary Process," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 479-505, February.
    4. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    5. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    6. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    7. Cui, Peng-Bi, 2023. "Exploring the foundation of social diversity and coherence with a novel attraction–repulsion model framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    8. Martins, André C.R., 2022. "Extremism definitions in opinion dynamics models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    9. María Cecilia Gimenez & Luis Reinaudi & Ana Pamela Paz-García & Paulo Marcelo Centres & Antonio José Ramirez-Pastor, 2021. "Opinion evolution in the presence of constant propaganda: homogeneous and localized cases," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(1), pages 1-11, January.
    10. G Jordan Maclay & Moody Ahmad, 2021. "An agent based force vector model of social influence that predicts strong polarization in a connected world," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-42, November.
    11. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    12. Agnieszka Kowalska-Styczeń & Krzysztof Malarz, 2020. "Noise induced unanimity and disorder in opinion formation," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-22, July.
    13. Shyam Gouri Suresh & Scott Jeffrey, 2017. "The Consequences of Social Pressures on Partisan Opinion Dynamics," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 242-259, March.
    14. Fang, Aili, 2021. "The influence of communication structure on opinion dynamics in social networks with multiple true states," Applied Mathematics and Computation, Elsevier, vol. 406(C).
    15. Eger, Steffen, 2016. "Opinion dynamics and wisdom under out-group discrimination," Mathematical Social Sciences, Elsevier, vol. 80(C), pages 97-107.
    16. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    17. Shane T. Mueller & Yin-Yin Sarah Tan, 2018. "Cognitive perspectives on opinion dynamics: the role of knowledge in consensus formation, opinion divergence, and group polarization," Journal of Computational Social Science, Springer, vol. 1(1), pages 15-48, January.
    18. Weimer, Christopher W. & Miller, J.O. & Hill, Raymond R. & Hodson, Douglas D., 2022. "An opinion dynamics model of meta-contrast with continuous social influence forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    19. Pérez-Martínez, H. & Bauzá Mingueza, F. & Soriano-Paños, D. & Gómez-Gardeñes, J. & Floría, L.M., 2023. "Polarized opinion states in static networks driven by limited information horizons," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    20. Akylai Taalaibekova, 2018. "Opinion formation in social networks," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(2), pages 85-108.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.13767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.