IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i4p850-867.html
   My bibliography  Save this article

Stable Matching for Dynamic Ride-Sharing Systems

Author

Listed:
  • Xing Wang

    (General Electronic Global Research, Niskayuna, New York 12309)

  • Niels Agatz

    (Rotterdam School of Management, Erasmus University, 3062 PA Rotterdam, Netherlands)

  • Alan Erera

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318)

Abstract

Dynamic ride-sharing systems enable people to share rides and increase the efficiency of urban transportation by connecting riders and drivers on short notice. Automated systems that establish ride-share matches with minimal input from participants provide convenience and the most potential for system-wide performance improvement, such as reduction in total vehicle-miles traveled. Indeed, such systems may be designed to match riders and drivers to maximize system performance improvement. However, system-optimal matches may not provide the maximum benefit to each individual participant. In this paper, we consider a notion of stability for ride-share matches and present several mathematical programming methods to establish stable or nearly stable matches, where we note that ride-share matching optimization is performed over time with incomplete information. Our numerical experiments using travel demand data for the metropolitan Atlanta region show that we can significantly increase the stability of ride-share matching solutions at the cost of only a small degradation in system-wide performance.

Suggested Citation

  • Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:850-867
    DOI: 10.1287/trsc.2017.0768
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0768
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lee, Alan & Savelsbergh, Martin, 2015. "Dynamic ridesharing: Is there a role for dedicated drivers?," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 483-497.
    2. Agatz, Niels A.H. & Erera, Alan L. & Savelsbergh, Martin W.P. & Wang, Xing, 2011. "Dynamic ride-sharing: A simulation study in metro Atlanta," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1450-1464.
    3. Alvin E. Roth, 2009. "What Have We Learned from Market Design?," Innovation Policy and the Economy, University of Chicago Press, vol. 9(1), pages 79-112.
    4. Roth, Alvin E, 1984. "The Evolution of the Labor Market for Medical Interns and Residents: A Case Study in Game Theory," Journal of Political Economy, University of Chicago Press, vol. 92(6), pages 991-1016, December.
    5. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    6. Clark Simon, 2006. "The Uniqueness of Stable Matchings," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 6(1), pages 1-28, December.
    7. Furuhata, Masabumi & Dessouky, Maged & Ordóñez, Fernando & Brunet, Marc-Etienne & Wang, Xiaoqing & Koenig, Sven, 2013. "Ridesharing: The state-of-the-art and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 28-46.
    8. Alvin E. Roth & Uriel G. Rothblum & John H. Vande Vate, 1993. "Stable Matchings, Optimal Assignments, and Linear Programming," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 803-828, November.
    9. Federico Echenique & Alistair J. Wilson & Leeat Yariv, 2016. "Clearinghouses for two‐sided matching: An experimental study," Quantitative Economics, Econometric Society, vol. 7(2), pages 449-482, July.
    10. Roth, Alvin E, 1991. "A Natural Experiment in the Organization of Entry-Level Labor Markets: Regional Markets for New Physicians and Surgeons in the United Kingdom," American Economic Review, American Economic Association, vol. 81(3), pages 415-440, June.
    11. Roberto Baldacci & Vittorio Maniezzo & Aristide Mingozzi, 2004. "An Exact Method for the Car Pooling Problem Based on Lagrangean Column Generation," Operations Research, INFORMS, vol. 52(3), pages 422-439, June.
    12. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    13. Agatz, Niels & Erera, Alan & Savelsbergh, Martin & Wang, Xing, 2012. "Optimization for dynamic ride-sharing: A review," European Journal of Operational Research, Elsevier, vol. 223(2), pages 295-303.
    14. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2016. "Making dynamic ride-sharing work: The impact of driver and rider flexibility," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 190-207.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    2. Zixuan Peng & Wenxuan Shan & Peng Jia & Bin Yu & Yonglei Jiang & Baozhen Yao, 2020. "Stable ride-sharing matching for the commuters with payment design," Transportation, Springer, vol. 47(1), pages 1-21, February.
    3. Wang, X. & Agatz, N.A.H. & Erera, A., 2015. "Stable Matching for Dynamic Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Long, Jiancheng & Tan, Weimin & Szeto, W.Y. & Li, Yao, 2018. "Ride-sharing with travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 143-171.
    5. Mourad, Abood & Puchinger, Jakob & Chu, Chengbin, 2019. "A survey of models and algorithms for optimizing shared mobility," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 323-346.
    6. Arslan, A.M. & Agatz, N.A.H. & Kroon, L.G. & Zuidwijk, R.A., 2016. "Crowdsourced Delivery: A Dynamic Pickup and Delivery Problem with Ad-hoc Drivers," ERIM Report Series Research in Management ERS-2016-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Tian, Li-Jun & Sheu, Jiuh-Biing & Huang, Hai-Jun, 2019. "The morning commute problem with endogenous shared autonomous vehicle penetration and parking space constraint," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 258-278.
    9. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.
    10. Sun, Yanshuo & Chen, Zhi-Long & Zhang, Lei, 2020. "Nonprofit peer-to-peer ridesharing optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    11. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem & Yacine Rekik, 2022. "Environmental and social implications of incorporating carpooling service on a customized bus system," Post-Print hal-03598768, HAL.
    12. Ruijie Li & Yu (Marco) Nie & Xiaobo Liu, 2020. "Pricing Carpool Rides Based on Schedule Displacement," Transportation Science, INFORMS, vol. 54(4), pages 1134-1152, July.
    13. Ke, Jintao & Yang, Hai & Li, Xinwei & Wang, Hai & Ye, Jieping, 2020. "Pricing and equilibrium in on-demand ride-pooling markets," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 411-431.
    14. Wenyi Chen & Martijn Mes & Marco Schutten & Job Quint, 2019. "A Ride-Sharing Problem with Meeting Points and Return Restrictions," Transportation Science, INFORMS, vol. 53(2), pages 401-426, March.
    15. Omer Faruk Aydin & Ilgin Gokasar & Onur Kalan, 2020. "Matching algorithm for improving ride-sharing by incorporating route splits and social factors," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-23, March.
    16. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    17. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    18. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    19. Hua, Shijia & Zeng, Wenjia & Liu, Xinglu & Qi, Mingyao, 2022. "Optimality-guaranteed algorithms on the dynamic shared-taxi problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    20. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:4:p:850-867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.