IDEAS home Printed from
   My bibliography  Save this article

Block Kalman Filtering for Large-Scale DSGE Models


  • Ingvar Strid


  • Karl Walentin



In this paper block Kalman filters for Dynamic Stochastic General Equilibrium models are presented and evaluated. Our approach is based on the simple idea of writing down the Kalman filter recursions on block form and appropriately sequencing the operations of the prediction step of the algorithm. It is argued that block filtering is the only viable serial algorithmic approach to significantly reduce Kalman filtering time in the context of large DSGE models. For the largest model we evaluate the block filter reduces the computation time by roughly a factor 2. Block filtering compares favourably with the more general method for faster Kalman filtering outlined by Koopman and Durbin (2000) and, furthermore, the two approaches are largely complementary
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Ingvar Strid & Karl Walentin, 2009. "Block Kalman Filtering for Large-Scale DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 33(3), pages 277-304, April.
  • Handle: RePEc:kap:compec:v:33:y:2009:i:3:p:277-304 DOI: 10.1007/s10614-008-9160-4

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Adolfson, Malin & Laseen, Stefan & Linde, Jesper & Villani, Mattias, 2007. "Bayesian estimation of an open economy DSGE model with incomplete pass-through," Journal of International Economics, Elsevier, vol. 72(2), pages 481-511, July.
    2. Christoffel, Kai & Coenen, Gunter & Warne, Anders, 2007. "Conditional versus unconditional forecasting with the New Area-Wide Model of the euro area," MPRA Paper 76759, University Library of Munich, Germany.
    3. Ivano Azzini & Riccardo Girardi & Marco Ratto, 2007. "Parallelization of Matlab codes under Windows platform for Bayesian estimation: A Dynare application," Working Papers 1, Euro-area Economy Modelling Centre.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Edward Herbst, 2015. "Using the “Chandrasekhar Recursions” for Likelihood Evaluation of DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 45(4), pages 693-705, April.
    2. Strid, Ingvar, 2008. "Metropolis-Hastings prefetching algorithms," SSE/EFI Working Paper Series in Economics and Finance 706, Stockholm School of Economics, revised 02 Dec 2009.
    3. Strid, Ingvar, 2010. "Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2814-2835, November.

    More about this item


    Kalman filter; DSGE model; Bayesian estimation; Algorithm; Fortran; Matlab; C11; C13; C63;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:33:y:2009:i:3:p:277-304. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.