IDEAS home Printed from https://ideas.repec.org/a/kap/apfinm/v19y2012i3p293-318.html
   My bibliography  Save this article

Approximation of Asymmetric Multivariate Return Distributions

Author

Abstract

We develop a new method to approximate the asymmetric multivariate probability density function (pdf) of financial asset returns by using series expansions; a rate of convergence for the mean absolute error of this approximation is also provided. We then propose the method of maximum likelihood and the generalized method of moments to estimate the parameters of the approximated pdf. A Monte-Carlo experiment corroborates the feasibility of our approach. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Ba Chu, 2012. "Approximation of Asymmetric Multivariate Return Distributions," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 19(3), pages 293-318, September.
  • Handle: RePEc:kap:apfinm:v:19:y:2012:i:3:p:293-318
    DOI: 10.1007/s10690-011-9150-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10690-011-9150-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10690-011-9150-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    2. J. L. Knight & S. E. Satchell & K. C. Tran, 1995. "Statistical modelling of asymmetric risk in asset returns," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(3), pages 155-172.
    3. Bertrand Maillet & Emmanuel Jurczenko, 2006. "Multi-moment Asset Allocation and Pricing Models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00308990, HAL.
    4. Chu, Ba, 2011. "Recovering copulas from limited information and an application to asset allocation," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1824-1842, July.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    6. Sargan, J D, 1976. "Econometric Estimators and the Edgeworth Approximation," Econometrica, Econometric Society, vol. 44(3), pages 421-448, May.
    7. Okimoto, Tatsuyoshi, 2008. "New Evidence of Asymmetric Dependence Structures in International Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(3), pages 787-815, September.
    8. Y. Malevergne & D. Sornette, 2002. "Multi-Moments Method for Portfolio Management: Generalized Capital Asset Pricing Model in Homogeneous and Heterogeneous markets," Papers cond-mat/0207475, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Xiaoshan & Li, Yuhan, 2024. "Robust portfolio selection with subjective risk aversion under dependence uncertainty," Economic Modelling, Elsevier, vol. 132(C).
    2. Małgorzata Doman & Ryszard Doman, 2013. "Dynamic linkages between stock markets: the effects of crises and globalization," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 87-112, August.
    3. Massimiliano Giacalone & Demetrio Panarello, 2022. "A Nonparametric Approach for Testing Long Memory in Stock Returns’ Higher Moments," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
    4. Sleire, Anders D. & Støve, Bård & Otneim, Håkon & Berentsen, Geir Drage & Tjøstheim, Dag & Haugen, Sverre Hauso, 2022. "Portfolio allocation under asymmetric dependence in asset returns using local Gaussian correlations," Finance Research Letters, Elsevier, vol. 46(PB).
    5. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    6. Okhrin, Yarema & Uddin, Gazi Salah & Yahya, Muhammad, 2023. "Nonlinear and asymmetric interconnectedness of crude oil with financial and commodity markets," Energy Economics, Elsevier, vol. 125(C).
    7. Del Brio, Esther B. & Mora-Valencia, Andrés & Perote, Javier, 2017. "The kidnapping of Europe: High-order moments' transmission between developed and emerging markets," Emerging Markets Review, Elsevier, vol. 31(C), pages 96-115.
    8. Ñíguez, Trino-Manuel & Perote, Javier, 2017. "Moments expansion densities for quantifying financial risk," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 53-69.
    9. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    10. Chollete, Loran & Pena, Victor de la & Lu, Ching-Chih, 2009. "International Diversification: A Copula Approach," UiS Working Papers in Economics and Finance 2009/27, University of Stavanger.
    11. Mario Cerrato & John Crosby & Minjoo Kim & Yang Zhao, 2015. "Modeling Dependence Structure and Forecasting Market Risk with Dynamic Asymmetric Copula," Working Papers 2015_15, Business School - Economics, University of Glasgow.
    12. Abdallah Ben Saida & Jean-luc Prigent, 2018. "On the robustness of portfolio allocation under copula misspecification," Annals of Operations Research, Springer, vol. 262(2), pages 631-652, March.
    13. Malevergne, Y. & Sornette, D., 2007. "Self-consistent asset pricing models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 149-171.
    14. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    15. Hossein Rad & Rand Kwong Yew Low & Robert Faff, 2016. "The profitability of pairs trading strategies: distance, cointegration and copula methods," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1541-1558, October.
    16. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    17. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    18. Ito, Kakeru & Yoshiba, Toshinao, 2025. "Dynamic asymmetric tail dependence structure among multi-asset classes for portfolio management: Dynamic skew-t copula approach," International Review of Economics & Finance, Elsevier, vol. 97(C).
    19. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    20. Cerrato, Mario & Crosby, John & Kim, Minjoo & Zhao, Yang, 2015. "US Monetary and Fiscal Policies - Conflict or Cooperation?," SIRE Discussion Papers 2015-78, Scottish Institute for Research in Economics (SIRE).

    More about this item

    Keywords

    Edge worth expansion; Series approximation; Asymmetric dependence; Tail risk; Mixture of the Gamma distributions; Laguerre polynomials; C60; C13; G11;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:apfinm:v:19:y:2012:i:3:p:293-318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.