IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2014-122-3.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Evaluating the Performance of Iterative Proportional Fitting for Spatial Microsimulation: New Tests for an Established Technique

Author

Abstract

Iterative Proportional Fitting (IPF), also known as biproportional fitting, ‘raking’ or the RAS algorithm, is an established procedure used in a variety of applications across the social sciences. Primary amongst these for urban modelling has been its use in static spatial microsimulation to generate small area microdata — individual level data allocated to administrative zones. The technique is mature, widely used and relatively straight-forward. Although IPF is well described mathematically, accessible examples of the algorithm written in modern programming languages are rare. There is a tendency for researchers to ‘start from scratch’, resulting in a variety of ad hoc implementations and little evidence about the relative merits of differing approaches. These knowledge gaps mean that answers to certain methodological questions must be guessed: How can ‘empty cells’ be identified and how do they influence model fit? Can IPF be made more computationally efficient? This paper tackles these questions and more using a systematic methodology with publicly available code and data. The results demonstrate the sensitivity of the results to initial conditions, notably the presence of ‘empty cells’, and the dramatic impact of software decisions on computational efficiency. The paper concludes by proposing an agenda for robust and transparent future tests in the field.

Suggested Citation

  • Robin Lovelace & Mark Birkin & Dimitris Ballas & Eveline van Leeuwen, 2015. "Evaluating the Performance of Iterative Proportional Fitting for Spatial Microsimulation: New Tests for an Established Technique," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(2), pages 1-21.
  • Handle: RePEc:jas:jasssj:2014-122-3
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/2/21/21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Lahr & Louis de Mesnard, 2004. "Biproportional Techniques in Input-Output Analysis: Table Updating and Structural Analysis," Economic Systems Research, Taylor & Francis Journals, vol. 16(2), pages 115-134.
    2. N. Cleave & P. J. Brown & C. D. Payne, 1995. "Evaluation of Methods for Ecological Inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 158(1), pages 55-72, January.
    3. Robert Tanton & Yogi Vidyattama & Binod Nepal & Justine McNamara, 2011. "Small area estimation using a reweighting algorithm," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 174(4), pages 931-951, October.
    4. Edwards, Kimberley L. & Clarke, Graham P., 2009. "The design and validation of a spatial microsimulation model of obesogenic environments for children in Leeds, UK: SimObesity," Social Science & Medicine, Elsevier, vol. 69(7), pages 1127-1134, October.
    5. Dimitris Ballas & Graham Clarke & Stephen Hynes & John Lennon & Karyn Morrissey & Cathal O’Donoghue, 2013. "A Review of Microsimulation for Policy Analysis," Advances in Spatial Science, in: Cathal O'Donoghue & Dimitris Ballas & Graham Clarke & Stephen Hynes & Karyn Morrissey (ed.), Spatial Microsimulation for Rural Policy Analysis, edition 127, chapter 0, pages 35-54, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
    2. Hynes, Stephen & O'Donoghue, Cathal, 2019. "Estimating the value of achieving good ecological status across Irish water catchments using value transfer," Working Papers 309538, National University of Ireland, Galway, Socio-Economic Marine Research Unit.
    3. Kate A Timmins & Kimberley L Edwards, 2016. "Validation of Spatial Microsimulation Models: a Proposal to Adopt the Bland-Altman Method," International Journal of Microsimulation, International Microsimulation Association, vol. 9(2), pages 106-122.
    4. Yong Jee KIM & Brigitte WALDORF & Juan SESMERO, 2020. "Relocation, Retreat, and the Rising Sea Level: A Simulation of Aggregate Outcomes in Escambia County, Florida," Region et Developpement, Region et Developpement, LEAD, Universite du Sud - Toulon Var, vol. 51, pages 31-43.
    5. Spooner, Fiona & Abrams, Jesse F. & Morrissey, Karyn & Shaddick, Gavin & Batty, Michael & Milton, Richard & Dennett, Adam & Lomax, Nik & Malleson, Nick & Nelissen, Natalie & Coleman, Alex & Nur, Jamil, 2021. "A dynamic microsimulation model for epidemics," Social Science & Medicine, Elsevier, vol. 291(C).
    6. Kelli Francis-Staite, 2022. "Internal multi-portfolio rebalancing processes: Linking resource allocation models and biproportional matrix techniques to portfolio management," Papers 2201.06183, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    2. Frederik Priem & Philip Stessens & Frank Canters, 2020. "Microsimulation of Residential Activity for Alternative Urban Development Scenarios: A Case Study on Brussels and Flemish Brabant," Sustainability, MDPI, vol. 12(6), pages 1-28, March.
    3. Cathal O'Donoghue & Karyn Morrissey & John Lennon, 2014. "Spatial Microsimulation Modelling: a Review of Applications and Methodological Choices," International Journal of Microsimulation, International Microsimulation Association, vol. 7(1), pages 26-75.
    4. Maheshwar Rao & Robert Tanton & Yogi Vidyattama, 2013. "‘A Systems Approach to Analyse the Impacts of Water Policy Reform in the Murray-Darling Basin: a conceptual and an analytical framework’," NATSEM Working Paper Series 13/22, University of Canberra, National Centre for Social and Economic Modelling.
    5. Barbara Hutniczak, 2022. "Efficient updating of regional supply and use tables with the national-level statistics," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 11(1), pages 1-11, December.
    6. Ryoji Hasegawa & Shigemi Kagawa & Makiko Tsukui, 2015. "Carbon footprint analysis through constructing a multi-region input–output table: a case study of Japan," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-20, December.
    7. Loughrey, Jason & O’Donoghue, Cathal & Meredith, David & Murphy, Ger & Shanahan, Ultan & Miller, Corina, 2018. "The Local Impact of Cattle Farming," 166th Seminar, August 30-31, 2018, Galway, West of Ireland 276231, European Association of Agricultural Economists.
    8. Stephen Pratt, 2012. "Tourism Yield of Different Market Segments: A Case Study of Hawaii," Tourism Economics, , vol. 18(2), pages 373-391, April.
    9. Elvio Mattioli & Giuseppe Ricciardo Lamonica, 2016. "The world’s economic geography: evidence from the world input–output table," Empirical Economics, Springer, vol. 50(3), pages 697-728, May.
    10. Zhang, Lixiao & Yang, Min & Zhang, Pengpeng & Hao, Yan & Lu, Zhongming & Shi, Zhimin, 2021. "De-coal process in urban China: What can we learn from Beijing's experience?," Energy, Elsevier, vol. 230(C).
    11. Alex Fenton, 2013. "Small-area measures of income poverty," CASE Papers case173, Centre for Analysis of Social Exclusion, LSE.
    12. Roszka Wojciech, 2019. "Spatial Microsimulation Of Personal Income In Poland At The Level Of Subregions," Statistics in Transition New Series, Polish Statistical Association, vol. 20(3), pages 133-153, September.
    13. repec:cep:sticas:/173 is not listed on IDEAS
    14. Satoshi Nakano & Kazuhiko Nishimura, 2013. "A nonsurvey multiregional input–output estimation allowing cross-hauling: partitioning two regions into three or more parts," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(3), pages 935-951, June.
    15. Choi, Jun-Ki & Bakshi, Bhavik R. & Haab, Timothy, 2010. "Effects of a carbon price in the U.S. on economic sectors, resource use, and emissions: An input-output approach," Energy Policy, Elsevier, vol. 38(7), pages 3527-3536, July.
    16. V. I. Blanutsa & K. A. Cherepanov, 2019. "Regional Information Flows: Existing and New Approaches to Geographical Study," Regional Research of Russia, Springer, vol. 9(1), pages 97-106, January.
    17. Srini Vasan & Adelamar Alcantara, 2016. "GIS-based Methods for Estimating Missing Poverty Rates & Projecting Future Rates in Census Tracts," Review of Economics & Finance, Better Advances Press, Canada, vol. 6, pages 1-13, August.
    18. Jinjing Li & Yogi Vidyattama, 2019. "Projecting spatial population and labour force growth in Australian districts," Journal of Population Research, Springer, vol. 36(3), pages 205-232, September.
    19. Michael L. Lahr & João Pedro Ferreira & Johannes R. Többen, 2020. "Intraregional trade shares for goods‐producing industries: RPC estimates using EU data," Papers in Regional Science, Wiley Blackwell, vol. 99(6), pages 1583-1605, December.
    20. Robert Tanton, 2018. "Spatial Microsimulation: Developments and Potential Future Directions," International Journal of Microsimulation, International Microsimulation Association, vol. 11(1), pages 143-161.
    21. Umed Temursho, 2018. "Entropy‐based benchmarking methods," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 421-446, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2014-122-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.