IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v65y2019i7p3131-3149.html
   My bibliography  Save this article

Learning Preferences with Side Information

Author

Listed:
  • Vivek F. Farias

    (Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

  • Andrew A. L

    (Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142)

Abstract

Product and content personalization is now ubiquitous in e-commerce. There are typically not enough available transactional data for this task. As such, companies today seek to use a variety of information on the interactions between a product and a customer to drive personalization decisions. We formalize this problem as one of recovering a large-scale matrix with side information in the form of additional matrices of conforming dimension. Viewing the matrix we seek to recover and the side information we have as slices of a tensor, we consider the problem of slice recovery , which is to recover specific slices of “simple” tensors from noisy observations of the entire tensor. We propose a definition of simplicity that on the one hand elegantly generalizes a standard generative model for our motivating problem and on the other hand subsumes low-rank tensors for a variety of existing definitions of tensor rank. We provide an efficient algorithm for slice recovery that is practical for massive data sets and provides a significant performance improvement over state-of-the-art incumbent approaches to tensor recovery. Furthermore, we establish near-optimal recovery guarantees that, in an important regime, represent an order improvement over the best available results for this problem. Experiments on data from a music streaming service demonstrate the performance and scalability of our algorithm.

Suggested Citation

  • Vivek F. Farias & Andrew A. L, 2019. "Learning Preferences with Side Information," Management Science, INFORMS, vol. 65(7), pages 3131-3149, July.
  • Handle: RePEc:inm:ormnsc:v:65:y:2019:i:7:p:3131-3149
    DOI: 10.1287/mnsc.2018.3092
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/mnsc.2018.3092
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2018.3092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    2. Daniel Fleder & Kartik Hosanagar, 2009. "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity," Management Science, INFORMS, vol. 55(5), pages 697-712, May.
    3. Tuck Siong Chung & Roland T. Rust & Michel Wedel, 2009. "My Mobile Music: An Adaptive Personalization System for Digital Audio Players," Marketing Science, INFORMS, vol. 28(1), pages 52-68, 01-02.
    4. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    5. Anindya Ghose & Panagiotis G. Ipeirotis & Beibei Li, 2012. "Designing Ranking Systems for Hotels on Travel Search Engines by Mining User-Generated and Crowdsourced Content," Marketing Science, INFORMS, vol. 31(3), pages 493-520, May.
    6. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    7. Emre M. Demirezen & Subodha Kumar, 2016. "Optimization of Recommender Systems Based on Inventory," Production and Operations Management, Production and Operations Management Society, vol. 25(4), pages 593-608, April.
    8. Hoff, Peter D., 2007. "Model Averaging and Dimension Selection for the Singular Value Decomposition," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 674-685, June.
    9. Bruno J.D. Jacobs & Bas Donkers & Dennis Fok, 2016. "Model-Based Purchase Predictions for Large Assortments," Marketing Science, INFORMS, vol. 35(3), pages 389-404, May.
    10. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koşar, Gizem & Ransom, Tyler & van der Klaauw, Wilbert, 2022. "Understanding migration aversion using elicited counterfactual choice probabilities," Journal of Econometrics, Elsevier, vol. 231(1), pages 123-147.
    2. Debjit Roy & Eirini Spiliotopoulou & Jelle de Vries, 2022. "Restaurant analytics: Emerging practice and research opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3687-3709, October.
    3. Andrea Tolentino Herrera & José Gerardo De la Vega Meneses, 2020. "Responsabilidad Social Corporativa como la clave para las empresas exitosas," Revista de Investigación en Ciencias Contables y Administrativas, Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Contaduría y Ciencias Administrativas, vol. 6(1), pages 116-129, December.
    4. Ruohan Zhan & Zhimei Ren & Susan Athey & Zhengyuan Zhou, 2024. "Policy Learning with Adaptively Collected Data," Management Science, INFORMS, vol. 70(8), pages 5270-5297, August.
    5. Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
    6. Yang Qian & Yuanchun Jiang & Yanan Du & Jianshan Sun & Yezheng Liu, 2020. "Segmenting market structure from multi-channel clickstream data: a novel generative model," Electronic Commerce Research, Springer, vol. 20(3), pages 509-533, September.
    7. Paramveer S. Dhillon & Sinan Aral, 2021. "Modeling Dynamic User Interests: A Neural Matrix Factorization Approach," Marketing Science, INFORMS, vol. 40(6), pages 1059-1080, November.
    8. Paulo Oliva & Philipp Zahn, 2021. "On Rational Choice and the Representation of Decision Problems," Games, MDPI, vol. 12(4), pages 1-21, November.
    9. Wai Kit Tsang & Dries F. Benoit, 2020. "Gaussian processes for daily demand prediction in tourism planning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 551-568, April.
    10. Andrea Tolentino Herrera & José Gerardo De la Vega Meneses, 2020. "Responsabilidad Social Corporativa como la clave para las empresas exitosas," Revista de Investigación en Ciencias Contables y Administrativas, Universidad Michoacana de San Nicolás de Hidalgo, Facultad de Contaduría y Ciencias Administrativas, vol. 6(1), pages 116-129, December.
    11. Francis de Véricourt & Georgia Perakis, 2020. "Frontiers in Service Science: The Management of Data Analytics Services: New Challenges and Future Directions," Service Science, INFORMS, vol. 12(4), pages 121-129, December.
    12. Guo, Mengzhuo & Liao, Xiuwu & Liu, Jiapeng & Zhang, Qingpeng, 2020. "Consumer preference analysis: A data-driven multiple criteria approach integrating online information," Omega, Elsevier, vol. 96(C).
    13. Hamsa Bastani, 2021. "Predicting with Proxies: Transfer Learning in High Dimension," Management Science, INFORMS, vol. 67(5), pages 2964-2984, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daria Dzyabura & John R. Hauser, 2019. "Recommending Products When Consumers Learn Their Preference Weights," Marketing Science, INFORMS, vol. 38(3), pages 417-441, May.
    2. Anindya Ghose & Beibei Li & Siyuan Liu, 2019. "Mobile Targeting Using Customer Trajectory Patterns," Management Science, INFORMS, vol. 65(11), pages 5027-5049, November.
    3. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    4. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    5. Umberto Panniello & Michele Gorgoglione & Alexander Tuzhilin, 2016. "Research Note—In CARSs We Trust: How Context-Aware Recommendations Affect Customers’ Trust and Other Business Performance Measures of Recommender Systems," Information Systems Research, INFORMS, vol. 27(1), pages 182-196, March.
    6. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    7. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.
    8. Will Wei Sun & Junwei Lu & Han Liu & Guang Cheng, 2017. "Provable sparse tensor decomposition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 899-916, June.
    9. Budzinski, Oliver & Gänßle, Sophia & Lindstädt-Dreusicke, Nadine, 2021. "Data (r)evolution - The economics of algorithmic search and recommender services," Ilmenau Economics Discussion Papers 148, Ilmenau University of Technology, Institute of Economics.
    10. Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
    11. Qian Wang & Jijun Yu & Weiwei Deng, 2019. "An adjustable re-ranking approach for improving the individual and aggregate diversities of product recommendations," Electronic Commerce Research, Springer, vol. 19(1), pages 59-79, March.
    12. Waleed Reafee & Naomie Salim & Atif Khan, 2016. "The Power of Implicit Social Relation in Rating Prediction of Social Recommender Systems," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-20, May.
    13. Park, YoungSoo & Sim, Jeongeun & Kim, Bosung, 2022. "Online retail operations with “Try-Before-You-Buy”," European Journal of Operational Research, Elsevier, vol. 299(3), pages 987-1002.
    14. Dokyun Lee & Kartik Hosanagar, 2021. "How Do Product Attributes and Reviews Moderate the Impact of Recommender Systems Through Purchase Stages?," Management Science, INFORMS, vol. 67(1), pages 524-546, January.
    15. Dokyun Lee & Kartik Hosanagar, 2019. "How Do Recommender Systems Affect Sales Diversity? A Cross-Category Investigation via Randomized Field Experiment," Service Science, INFORMS, vol. 30(1), pages 239-259, March.
    16. Marc Bourreau & Germain Gaudin, 2022. "Streaming platform and strategic recommendation bias," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(1), pages 25-47, February.
    17. Na Zhang & Karthik Kannan & George Shanthikumar, 2021. "Nudging a Slow‐Moving High‐Margin Product in a Supply Chain with Constrained Capacity," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 11-27, January.
    18. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    19. Gediminas Adomavicius & YoungOk Kwon, 2014. "Optimization-Based Approaches for Maximizing Aggregate Recommendation Diversity," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 351-369, May.
    20. Felipe Thomaz & Carolina Salge & Elena Karahanna & John Hulland, 2020. "Learning from the Dark Web: leveraging conversational agents in the era of hyper-privacy to enhance marketing," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 43-63, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:65:y:2019:i:7:p:3131-3149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.