IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Fast Polyhedral Adaptive Conjoint Estimation

  • Olivier Toubia

    ()

    (Sloan School of Management, Massachusetts Institute of Technology, E56-305, 38 Memorial Drive, Cambridge, Massachusetts 02142)

  • Duncan I. Simester

    ()

    (Sloan School of Management, Massachusetts Institute of Technology, E56-305, 38 Memorial Drive, Cambridge, Massachusetts 02142)

  • John R. Hauser

    ()

    (Sloan School of Management, Massachusetts Institute of Technology, E56-305, 38 Memorial Drive, Cambridge, Massachusetts 02142)

  • Ely Dahan

    ()

    (Anderson School, University of California at Los Angeles, 110 Westwood Plaza, B-514, Los Angeles, California 90095)

We propose and test new adaptive question design and estimation algorithms for partial profile conjoint analysis. Polyhedral question design focuses questions to reduce a feasible set of parameters as rapidly as possible. Analytic center estimation uses a centrality criterion based on consistency with respondents' answers. Both algorithms run with no noticeable delay between questions. We evaluate the proposed methods relative to established benchmarks for question design (random selection, D-efficient designs, adaptive conjoint analysis) and estimation (hierarchical Bayes). Monte Carlo simulations vary respondent heterogeneity and response errors. For low numbers of questions, polyhedral question design does best (or is tied for best) for all tested domains. For high numbers of questions, efficient fixed designs do better in some domains. Analytic center estimation shows promise for high heterogeneity and for low response errors; hierarchical Bayes for low heterogeneity and high response errors. Other simulations evaluate hybrid methods, which include self-explicated data. A field test (330 respondents) compared methods on both internal validity (holdout tasks) and external validity (actual choice of a laptop bag worth approximately $100). The field test is consistent with the simulation results and offers strong support for polyhedral question design. In addition, marketplace sales were consistent with conjoint-analysis predictions.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.1287/mksc.22.3.273.17743
Download Restriction: no

Article provided by INFORMS in its journal Marketing Science.

Volume (Year): 22 (2003)
Issue (Month): 3 ()
Pages: 273-303

as
in new window

Handle: RePEc:inm:ormksc:v:22:y:2003:i:3:p:273-303
Contact details of provider: Postal:
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

Phone: +1-443-757-3500
Fax: 443-757-3515
Web page: http://www.informs.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-38, May.
  2. David Reibstein & John E. G. Bateson & William Boulding, 1988. "Conjoint Analysis Reliability: Empirical Findings," Marketing Science, INFORMS, vol. 7(3), pages 271-286.
  3. Toubia, Olivier & Hauser, John & Simester, Duncan, 2003. "Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis," Working papers 4285-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
  4. Elie Ofek & V. Srinivasan, 2002. "How Much Does the Market Value an Improvement in a Product Attribute?," Marketing Science, INFORMS, vol. 21(4), pages 398-411, June.
  5. V. Srinivasan & Allan Shocker, 1973. "Linear programming techniques for multidimensional analysis of preferences," Psychometrika, Springer;The Psychometric Society, vol. 38(3), pages 337-369, September.
  6. Freund, Robert Michael. & Roundy, Robin. & Todd, Michael J., 1947-, 1985. "Identifying the set of always-active constraints in a system of linear inequalities by a single linear program," Working papers 1674-85., Massachusetts Institute of Technology (MIT), Sloan School of Management.
  7. Green, Paul E & Helsen, Kristiaan & Shandler, Bruce, 1988. " Conjoint Internal Validity under Alternative Profile Presentations," Journal of Consumer Research, Oxford University Press, vol. 15(3), pages 392-97, December.
  8. Peter J. Lenk & Wayne S. DeSarbo & Paul E. Green & Martin R. Young, 1996. "Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing Science, INFORMS, vol. 15(2), pages 173-191.
  9. John R. Hauser & Steven P. Gaskin, 1984. "Application of the “Defender” Consumer Model," Marketing Science, INFORMS, vol. 3(4), pages 327-351.
  10. Green, Paul E & Srinivasan, V, 1978. " Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Oxford University Press, vol. 5(2), pages 103-23, Se.
  11. Sha Yang & Gerg M. Allenby & Geraldine Fennel, 2002. "Modeling Variation in Brand Preference: The Roles of Objective Environment and Motivating Conditions," Marketing Science, INFORMS, vol. 21(1), pages 14-31, May.
  12. Moore, William L. & Semenik, Richard J., 1988. "Measuring preferences with hybrid conjoint analysis: The impact of a different number of attributes in the master design," Journal of Business Research, Elsevier, vol. 16(3), pages 261-274, May.
  13. Neeraj Arora & Greg M. Allenby & James L. Ginter, 1998. "A Hierarchical Bayes Model of Primary and Secondary Demand," Marketing Science, INFORMS, vol. 17(1), pages 29-44.
  14. Arora, Neeraj & Huber, Joel, 2001. " Improving Parameter Estimates and Model Prediction by Aggregate Customization in Choice Experiments," Journal of Consumer Research, Oxford University Press, vol. 28(2), pages 273-83, September.
  15. Zsolt Sándor & Michel Wedel, 2002. "Profile Construction in Experimental Choice Designs for Mixed Logit Models," Marketing Science, INFORMS, vol. 21(4), pages 455-475, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:22:y:2003:i:3:p:273-303. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.