IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v20y2025i1a2.html
   My bibliography  Save this article

Modeling economic growth in pandemic times with machine learning regression algorithms

Author

Listed:
  • Jesús Alejandro Navarro Acosta

    (Universidad Autónoma de Coahuila, México)

  • Valeria Soto Mendoza

    (Universidad Autónoma de Coahuila, México)

  • Laura Policardo

    (Customs and Monopolies Agency)

  • Edgar Javier Sánchez Carrera

    (Universidad Autónoma de Coahuila, México)

Abstract

El objetivo es analizar el contraste de políticas para enfrentar la pandemia de Covid-19 en el desempeño socioeconómico de: Italia, México y Estados Unidos. Metodología: Aplicando técnicas de aprendizaje automático (machine learning, ML) para analizar los efectos socioeconómicos de la pandemia (medidas de contención, tasas de infección, muertes totales, vacunación, etc.) sobre el crecimiento del PIB en esos países. El experimento es que el índice de contingencia referencial de Nueva Zelanda reemplaza el propio índice referencial de cada uno de los países para predecir el PIB, muertes inducidas por Covid-19 y tasa de reproducción de Covid-19. Se muestra que las técnicas de ML son herramientas sólidas para regresiones de resultados múltiples y para escenarios experimentales sobre el impacto socioeconómico de la pandemia de Covid-19. Resultados: Los resultados experimentales revelaron que las técnicas de Árbol de Regresión y Bosque Aleatorio estiman y predicen con éxito los casos de Italia, México y Estados Unidos. Conclusiones: La propuesta es contingencia y vacunación son sin duda exitosas en la lucha contra una pandemia, además de medir los efectos de dichas políticas con el uso de técnicas novedosas como el ML.

Suggested Citation

  • Jesús Alejandro Navarro Acosta & Valeria Soto Mendoza & Laura Policardo & Edgar Javier Sánchez Carrera, 2025. "Modeling economic growth in pandemic times with machine learning regression algorithms," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 20(1), pages 1-33, Enero - M.
  • Handle: RePEc:imx:journl:v:20:y:2025:i:1:a:2
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/911
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jina Mahmoudi & Chenfeng Xiong, 2022. "How social distancing, mobility, and preventive policies affect COVID-19 outcomes: Big data-driven evidence from the District of Columbia-Maryland-Virginia (DMV) megaregion," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
    2. Simila, Timo & Tikka, Jarkko, 2007. "Input selection and shrinkage in multiresponse linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 406-422, September.
    3. Nicolas Woloszko, 2020. "Tracking activity in real time with Google Trends," OECD Economics Department Working Papers 1634, OECD Publishing.
    4. Meade, Nigel, 2002. "A comparison of the accuracy of short term foreign exchange forecasting methods," International Journal of Forecasting, Elsevier, vol. 18(1), pages 67-83.
    5. Wei-Yin Loh, 2014. "Fifty Years of Classification and Regression Trees," International Statistical Review, International Statistical Institute, vol. 82(3), pages 329-348, December.
    6. Kohei Maehashi & Mototsugu Shintani, 2020. "Macroeconomic Forecasting Using Factor Models and Machine Learning: An Application to Japan," CIRJE F-Series CIRJE-F-1146, CIRJE, Faculty of Economics, University of Tokyo.
    7. Merkaj, Elvina & Santolini, Raffaella, 2022. "Italian national policies in response to the COVID-19 pandemic: The case of the Friuli-Venezia-Giulia and Umbria Regions," Health Policy, Elsevier, vol. 126(4), pages 287-293.
    8. Christos Katris, 2020. "Prediction of Unemployment Rates with Time Series and Machine Learning Techniques," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 673-706, February.
    9. Raymundo M. Campos-Vazquez & Gerardo Esquivel, 2021. "Consumption and geographic mobility in pandemic times. Evidence from Mexico," Review of Economics of the Household, Springer, vol. 19(2), pages 353-371, June.
    10. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    11. Patrick Bajari & Denis Nekipelov & Stephen P. Ryan & Miaoyu Yang, 2015. "Machine Learning Methods for Demand Estimation," American Economic Review, American Economic Association, vol. 105(5), pages 481-485, May.
    12. Periklis Gogas & Theophilos Papadimitriou, 2021. "Machine Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 1-4, January.
    13. Yoonsuh Jung & Jianhua Hu, 2015. "A K -fold averaging cross-validation procedure," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 167-179, June.
    14. Mauro Caselli & Andrea Fracasso & Sergio Scicchitano, 2022. "From the lockdown to the new normal: individual mobility and local labor market characteristics following the COVID-19 pandemic in Italy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 35(4), pages 1517-1550, October.
    15. Maehashi, Kohei & Shintani, Mototsugu, 2020. "Macroeconomic forecasting using factor models and machine learning: an application to Japan," Journal of the Japanese and International Economies, Elsevier, vol. 58(C).
    16. Yun Liao, 2017. "Machine Learning in Macro-Economic Series Forecasting," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(12), pages 71-76, December.
    17. Leo Breiman & Jerome H. Friedman, 1997. "Predicting Multivariate Responses in Multiple Linear Regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 3-54.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
    2. Sun, Weixin & Wang, Yong & Zhang, Li & Chen, Xihui Haviour & Hoang, Yen Hai, 2025. "Enhancing economic cycle forecasting based on interpretable machine learning and news narrative sentiment," Technological Forecasting and Social Change, Elsevier, vol. 215(C).
    3. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    4. Halko, Marja-Liisa & Lappalainen, Olli & Sääksvuori, Lauri, 2021. "Do non-choice data reveal economic preferences? Evidence from biometric data and compensation-scheme choice," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 87-104.
    5. Dennis Kant & Andreas Pick & Jasper de Winter, 2025. "Nowcasting GDP using machine learning methods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 1-24, March.
    6. Rodríguez-Vargas, Adolfo, 2020. "Forecasting Costa Rican inflation with machine learning methods," Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 1(1).
    7. Md Mohsan Khudri & Kang Keun Rhee & Mohammad Shabbir Hasan & Karar Zunaid Ahsan, 2023. "Predicting nutritional status for women of childbearing age from their economic, health, and demographic features: A supervised machine learning approach," PLOS ONE, Public Library of Science, vol. 18(5), pages 1-31, May.
    8. Anastasios Petropoulos & Vassilis Siakoulis & Konstantinos P. Panousis & Loukas Papadoulas & Sotirios Chatzis, 2023. "Macroeconomic forecasting and sovereign risk assessment using deep learning techniques," Papers 2301.09856, arXiv.org.
    9. Abrell, Jan & Kosch, Mirjam & Rausch, Sebastian, 2022. "How effective is carbon pricing?—A machine learning approach to policy evaluation," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).
    10. Embaye, Weldensie T. & Zereyesus, Yacob A., 2017. "Measuring the value of housing services in household surveys: an application of machine learning approach," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252851, Southern Agricultural Economics Association.
    11. Koffi Dumor & Li Yao, 2019. "Estimating China’s Trade with Its Partner Countries within the Belt and Road Initiative Using Neural Network Analysis," Sustainability, MDPI, vol. 11(5), pages 1-22, March.
    12. Colin F. Camerer & Gideon Nave & Alec Smith, 2019. "Dynamic Unstructured Bargaining with Private Information: Theory, Experiment, and Outcome Prediction via Machine Learning," Management Science, INFORMS, vol. 65(4), pages 1867-1890, April.
    13. Dylan Brewer & Alyssa Carlson, 2024. "Addressing sample selection bias for machine learning methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 383-400, April.
    14. Evgeniy M. Ozhegov & Daria Teterina, 2018. "The Ensemble Method For Censored Demand Prediction," HSE Working papers WP BRP 200/EC/2018, National Research University Higher School of Economics.
    15. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2018. "Économétrie & Machine Learning," Working Papers hal-01568851, HAL.
    16. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    17. Chiranjit Chakraborty & Andreas Joseph, 2017. "Machine learning at central banks," Bank of England working papers 674, Bank of England.
    18. Daniele Guariso, 2018. "Terrorist Attacks and Immigration Rhetoric: A Natural Experiment on British MPs," Working Paper Series 1218, Department of Economics, University of Sussex Business School.
    19. Emrich Eike & Pierdzioch Christian, 2016. "Public Goods, Private Consumption, and Human Capital: Using Boosted Regression Trees to Model Volunteer Labour Supply," Review of Economics, De Gruyter, vol. 67(3), pages 263-283, December.
    20. Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • I1 - Health, Education, and Welfare - - Health
    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • O5 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies
    • Y1 - Miscellaneous Categories - - Data: Tables and Charts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:20:y:2025:i:1:a:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.