IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v20y2025i1a2.html
   My bibliography  Save this article

Modeling economic growth in pandemic times with machine learning regression algorithms

Author

Listed:
  • Jesús Alejandro Navarro Acosta

    (Universidad Autónoma de Coahuila, México)

  • Valeria Soto Mendoza

    (Universidad Autónoma de Coahuila, México)

  • Laura Policardo

    (Customs and Monopolies Agency)

  • Edgar Javier Sánchez Carrera

    (Universidad Autónoma de Coahuila, México)

Abstract

El objetivo es analizar el contraste de políticas para enfrentar la pandemia de Covid-19 en el desempeño socioeconómico de: Italia, México y Estados Unidos. Metodología: Aplicando técnicas de aprendizaje automático (machine learning, ML) para analizar los efectos socioeconómicos de la pandemia (medidas de contención, tasas de infección, muertes totales, vacunación, etc.) sobre el crecimiento del PIB en esos países. El experimento es que el índice de contingencia referencial de Nueva Zelanda reemplaza el propio índice referencial de cada uno de los países para predecir el PIB, muertes inducidas por Covid-19 y tasa de reproducción de Covid-19. Se muestra que las técnicas de ML son herramientas sólidas para regresiones de resultados múltiples y para escenarios experimentales sobre el impacto socioeconómico de la pandemia de Covid-19. Resultados: Los resultados experimentales revelaron que las técnicas de Árbol de Regresión y Bosque Aleatorio estiman y predicen con éxito los casos de Italia, México y Estados Unidos. Conclusiones: La propuesta es contingencia y vacunación son sin duda exitosas en la lucha contra una pandemia, además de medir los efectos de dichas políticas con el uso de técnicas novedosas como el ML.

Suggested Citation

  • Jesús Alejandro Navarro Acosta & Valeria Soto Mendoza & Laura Policardo & Edgar Javier Sánchez Carrera, 2025. "Modeling economic growth in pandemic times with machine learning regression algorithms," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 20(1), pages 1-33, Enero - M.
  • Handle: RePEc:imx:journl:v:20:y:2025:i:1:a:2
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/911
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Economic Growth; Data Driven Analysis; Machine Learning; Stringency Index; Pandemic COVID-19;
    All these keywords.

    JEL classification:

    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • I1 - Health, Education, and Welfare - - Health
    • O1 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development
    • O5 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies
    • Y1 - Miscellaneous Categories - - Data: Tables and Charts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:20:y:2025:i:1:a:2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.