IDEAS home Printed from https://ideas.repec.org/a/ibn/jsd123/v11y2024i6p47.html

Developing a Methodology for Estimating Transport-Related CO2 Emissions for Food Commodities

Author

Listed:
  • Ujue Fresan
  • Helen Harwatt
  • Joan Sabate

Abstract

There is a significant and growing interaction between the transport sector and the food sector as globalized markets continue to increase the demand for ‘food miles’ i.e. the number of miles a food item travels throughout its life cycle. The concept of ‘food miles’ has become interesting to the public and policy makers as a way to assess the relative carbon footprint of food choices. However, there is currently a lack of information available about the transport-related greenhouse gas emissions that would allow to accurately differentiate between food items. To help address these current knowledge gaps, this paper presents a transferable methodological approach to estimating the transport related CO2 emissions of 10 popular food commodities transported from the farm gate to the retailer. The methodology combines GIS, data from the scientific literature and detailed commodity specific data from personal communication with one of the largest food retailers in California. To travel from the farm gate to the retailer, the amounts of CO2 emissions varied amongst the 10 foods, ranging from 47 g CO2/kg oranges, to 78 g CO2/kg almonds. While California was used as a case study, this method would be replicable across other locations and food life cycle assessments.

Suggested Citation

  • Ujue Fresan & Helen Harwatt & Joan Sabate, 2024. "Developing a Methodology for Estimating Transport-Related CO2 Emissions for Food Commodities," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 11(6), pages 1-47, July.
  • Handle: RePEc:ibn:jsd123:v:11:y:2024:i:6:p:47
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jsd/article/download/0/0/37671/38035
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jsd/article/view/0/37671
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brodt, Sonja & Kramer, Klaas Jan & Kendall, Alissa & Feenstra, Gail, 2013. "Comparing environmental impacts of regional and national-scale food supply chains: A case study of processed tomatoes," Food Policy, Elsevier, vol. 42(C), pages 106-114.
    2. Nijdam, Durk & Rood, Trudy & Westhoek, Henk, 2012. "The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes," Food Policy, Elsevier, vol. 37(6), pages 760-770.
    3. Carlsson-Kanyama, Annika, 1998. "Climate change and dietary choices -- how can emissions of greenhouse gases from food consumption be reduced?," Food Policy, Elsevier, vol. 23(3-4), pages 277-293, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oriana Gava & Fabio Bartolini & Francesca Venturi & Gianluca Brunori & Alberto Pardossi, 2020. "Improving Policy Evidence Base for Agricultural Sustainability and Food Security: A Content Analysis of Life Cycle Assessment Research," Sustainability, MDPI, vol. 12(3), pages 1-29, February.
    2. Ghada Talat Alhothali & Noha M. Almoraie & Israa M. Shatwan & Najlaa M. Aljefree, 2021. "Sociodemographic Characteristics and Dietary Choices as Determinants of Climate Change Understanding and Concern in Saudi Arabia," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    3. Abeliotis, Konstadinos & Costarelli, Vassiliki & Anagnostopoulos, Konstadinos, 2016. "The Effect of Different Types of Diet on Greenhouse Gas Emissions in Greece," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 7(01), pages 1-14, February.
    4. Oriana Gava & Francesca Galli & Fabio Bartolini & Gianluca Brunori, 2018. "Linking Sustainability with Geographical Proximity in Food Supply Chains. An Indicator Selection Framework," Agriculture, MDPI, vol. 8(9), pages 1-22, August.
    5. Westhoek, Henk & Ingram, John & van Berkum, Siemen & Hajer, Maarten, 2015. "The European food system and natural resources: Impacts and Options," 148th Seminar, November 30-December 1, 2015, The Hague, The Netherlands 229279, European Association of Agricultural Economists.
    6. Adam A. Prag & Christian B. Henriksen, 2020. "Transition from Animal-Based to Plant-Based Food Production to Reduce Greenhouse Gas Emissions from Agriculture—The Case of Denmark," Sustainability, MDPI, vol. 12(19), pages 1-20, October.
    7. Dussadee Rattanaphra & Sittinun Tawkaew & Wilasinee Kingkam & Sasikarn Nuchdang & Kittiwan Kitpakornsanti & Unchalee Suwanmanee, 2025. "Global Warming Assessment of Dairy Farms: A Case Study of Organic and Conventional Fluid Milk in Thailand," Sustainability, MDPI, vol. 17(6), pages 1-20, March.
    8. Martina Schäfer & Melanie Jaeger-Erben & Aguinaldo Santos, 2011. "Leapfrogging to Sustainable Consumption? An Explorative Survey of Consumption Habits and Orientations in Southern Brazil," Journal of Consumer Policy, Springer, vol. 34(1), pages 175-196, March.
    9. repec:plo:pone00:0128752 is not listed on IDEAS
    10. Morena Bruno & Marianne Thomsen & Federico Maria Pulselli & Nicoletta Patrizi & Michele Marini & Dario Caro, 2019. "The carbon footprint of Danish diets," Climatic Change, Springer, vol. 156(4), pages 489-507, October.
    11. Huangling Gu & Yan Liu & Hao Xia & Zilong Li & Liyuan Huang & Yanjia Zeng, 2023. "Temporal and Spatial Differences in CO 2 Equivalent Emissions and Carbon Compensation Caused by Land Use Changes and Industrial Development in Hunan Province," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    12. Shang, Hua & Jiang, Li & Kumar Mangla, Sachin & Pan, Xiongfeng & Song, Malin, 2024. "Examining the role of national governance capacity in building the global low-carbon agricultural supply chains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    13. Helen Harwatt & Joan Sabaté & Gidon Eshel & Sam Soret & William Ripple, 2017. "Substituting beans for beef as a contribution toward US climate change targets," Climatic Change, Springer, vol. 143(1), pages 261-270, July.
    14. Dominic Lemken & Mandy Knigge & Stephan Meyerding & Achim Spiller, 2017. "The Value of Environmental and Health Claims on New Legume Products: A Non-Hypothetical Online Auction," Sustainability, MDPI, vol. 9(8), pages 1-18, July.
    15. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    16. Suzanne Kapelari & Georgios Alexopoulos & Theano Moussouri & Konstantin J. Sagmeister & Florian Stampfer, 2020. "Food Heritage Makes a Difference: The Importance of Cultural Knowledge for Improving Education for Sustainable Food Choices," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    17. Vázquez-Rowe, Ian & Villanueva-Rey, Pedro & Moreira, Mª Teresa & Feijoo, Gumersindo, 2013. "The role of consumer purchase and post-purchase decision-making in sustainable seafood consumption. A Spanish case study using carbon footprinting," Food Policy, Elsevier, vol. 41(C), pages 94-102.
    18. Thorn, Alexandra M. & Baker, Michael J. & Peters, Christian J., 2021. "Estimating biological capacity for grass-finished ruminant meat production in New England and New York," Agricultural Systems, Elsevier, vol. 189(C).
    19. Chantal Le Mouël & Anna Birgit Milford & Benjamin L. Bodirsky & Susanne Rolinski, 2019. "Drivers of meat consumption," Post-Print hal-02175593, HAL.
    20. Degerli, Bahar & Nazir, Serap & Sorgüven, Esra & Hitzmann, Bernd & Özilgen, Mustafa, 2015. "Assessment of the energy and exergy efficiencies of farm to fork grain cultivation and bread making processes in Turkey and Germany," Energy, Elsevier, vol. 93(P1), pages 421-434.
    21. Enthoven, Laura & Van den Broeck, Goedele, 2021. "Local food systems: Reviewing two decades of research," Agricultural Systems, Elsevier, vol. 193(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jsd123:v:11:y:2024:i:6:p:47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.