IDEAS home Printed from https://ideas.repec.org/a/gam/jtourh/v6y2025i2p80-d1651954.html
   My bibliography  Save this article

Customer Clustering and Marketing Optimization in Hospitality: A Hybrid Data Mining and Decision-Making Approach from an Emerging Economy

Author

Listed:
  • Maryam Deldadehasl

    (School of Electrical, Computer, and Biomedical Engineering, Southern Illinois University, Carbondale, IL 62901, USA)

  • Houra Hajian Karahroodi

    (School of Management and Marketing, Southern Illinois University, Carbondale, IL 62901, USA)

  • Pouya Haddadian Nekah

    (Barney Barnett School of Business and Free Enterprise, Florida Southern College, Lakeland, FL 33801, USA)

Abstract

This study introduces a novel Recency, Monetary, and Duration (RMD) model for customer classification in the hospitality industry. Using a hybrid approach that integrates data mining with multi-criteria decision-making techniques, this study aims to identify valuable customer segments and optimize marketing strategies. This research applies the K-means clustering algorithm to classify customers from a hotel in Iran based on RMD attributes. Cluster validation is performed using three internal indices, and hidden patterns are extracted through association rule mining. Customer segments are prioritized using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method and Customer Lifetime Value (CLV) analysis. The outcomes revealed six distinct customer clusters, identified as new customers; loyal customers; collective buying customers; potential customers; business customers, and lost customers. This study helps hotels to be aware of different types of customers with particular spending patterns, enabling hotels to tailor services and improve customer retention. It also provides managers with appropriate tools to allocate resources efficiently. This study extends the traditional Recency, Frequency, and Monetary (RFM) model by incorporating duration, an overlooked dimension of customer engagement. It is the first attempt to integrate data mining and multi-criteria decision-making for customer segmentation in Iran’s hospitality industry.

Suggested Citation

  • Maryam Deldadehasl & Houra Hajian Karahroodi & Pouya Haddadian Nekah, 2025. "Customer Clustering and Marketing Optimization in Hospitality: A Hybrid Data Mining and Decision-Making Approach from an Emerging Economy," Tourism and Hospitality, MDPI, vol. 6(2), pages 1-19, May.
  • Handle: RePEc:gam:jtourh:v:6:y:2025:i:2:p:80-:d:1651954
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2673-5768/6/2/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2673-5768/6/2/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McCarty, John A. & Hastak, Manoj, 2007. "Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression," Journal of Business Research, Elsevier, vol. 60(6), pages 656-662, June.
    2. Hannan Amoozad Mahdiraji & Edmundas Kazimieras Zavadskas & Aliakbar Kazeminia & AliAsghar Abbasi Kamardi, 2019. "Marketing strategies evaluation based on big data analysis: a CLUSTERING-MCDM approach," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 32(1), pages 2882-2898, January.
    3. Kayalvily Tabianan & Shubashini Velu & Vinayakumar Ravi, 2022. "K-Means Clustering Approach for Intelligent Customer Segmentation Using Customer Purchase Behavior Data," Sustainability, MDPI, vol. 14(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    2. I. Albarrán & P. Alonso-González & J. M. Marin, 2017. "Some criticism to a general model in Solvency II: an explanation from a clustering point of view," Empirical Economics, Springer, vol. 52(4), pages 1289-1308, June.
    3. Danijel Bratina & Armand Faganel, 2023. "Using Supervised Machine Learning Methods for RFM Segmentation: A Casino Direct Marketing Communication Case," Tržište/Market, Faculty of Economics and Business, University of Zagreb, vol. 35(1), pages 7-22.
    4. Coussement, Kristof & De Bock, Koen W., 2013. "Customer churn prediction in the online gambling industry: The beneficial effect of ensemble learning," Journal of Business Research, Elsevier, vol. 66(9), pages 1629-1636.
    5. Udoinyang G. Inyang & Okure O. Obot & Moses E. Ekpenyong & Aliu M. Bolanle, 2017. "Unsupervised Learning Framework for Customer Requisition and Behavioral Pattern Classification," Modern Applied Science, Canadian Center of Science and Education, vol. 11(9), pages 151-151, September.
    6. Yingqiu Zhu & Qiong Deng & Danyang Huang & Bingyi Jing & Bo Zhang, 2021. "Clustering based on Kolmogorov–Smirnov statistic with application to bank card transaction data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 558-578, June.
    7. Coussement, Kristof & Van den Bossche, Filip A.M. & De Bock, Koen W., 2014. "Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees," Journal of Business Research, Elsevier, vol. 67(1), pages 2751-2758.
    8. Schulze-González, Erik & Pastor-Ferrando, Juan-Pascual & Aragonés-Beltrán, Pablo, 2023. "Clustering and reference value for assessing influence in analytic network process without pairwise comparison matrices: Study of 17 real cases," Operations Research Perspectives, Elsevier, vol. 10(C).
    9. Philippe Baecke & Dirk Van Den Poel, 2010. "Improving Purchasing Behavior Predictions By Data Augmentation With Situational Variables," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 9(06), pages 853-872.
    10. Chen, Qiuying & Choi, Beom-Jin & Lee, Sang-Joon, 2025. "Tailoring customer segmentation strategies for luxury brands in the NFT market – The case of SUPERGUCCI," Journal of Retailing and Consumer Services, Elsevier, vol. 82(C).
    11. Albarrán Lozano, Irene & Marín Díazaraque, Juan Miguel & Alonso, Pablo J., 2011. "Why using a general model in Solvency II is not a good idea : an explanation from a Bayesian point of view," DES - Working Papers. Statistics and Econometrics. WS ws113729, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Sunčica Rogić & Ljiljana Kašćelan & Vladimir Kašćelan & Vladimir Đurišić, 2022. "Automatic customer targeting: a data mining solution to the problem of asymmetric profitability distribution," Information Technology and Management, Springer, vol. 23(4), pages 315-333, December.
    13. Budría, Santiago & Bravo Chew, Leslie, 2025. "Enduring Inequalities: Analyzing Energy Poverty Inertia Across K-Means Clusters," IZA Discussion Papers 17809, Institute of Labor Economics (IZA).
    14. Cinar, E. Mine & Hienkel, Tyler & Horwitz, William, 2019. "Comparative entrepreneurship factors between North Mediterranean and North African Countries: A regression tree analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 73(C), pages 88-94.
    15. M. Ballings & D. Van Den Poel, 2012. "The Relevant Length of Customer Event History for Churn Prediction: How long is long enough?," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 12/804, Ghent University, Faculty of Economics and Business Administration.
    16. Zilong Deng & Yizhang Wang & Mustafa Muwafak Alobaedy, 2025. "Federated k-means based on clusters backbone," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-14, June.
    17. Legohérel, Patrick & Hsu, Cathy H.C. & Daucé, Bruno, 2015. "Variety-seeking: Using the CHAID segmentation approach in analyzing the international traveler market," Tourism Management, Elsevier, vol. 46(C), pages 359-366.
    18. Pagn, Jos A. & Pratt, William R. & Sun, Jun, 2009. "Which physicians have access to electronic prescribing and which ones end up using it?," Health Policy, Elsevier, vol. 89(3), pages 288-294, March.
    19. Bacila Mihai-Florin & Radulescu Adrian & Marar Liviu Ioan, 2012. "Prepaid Telecom Customers Segmentation Using The K-Mean Algorithm," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 1112-1118, July.
    20. Gitae Kim & Bongsug Chae & David Olson, 2013. "A support vector machine (SVM) approach to imbalanced datasets of customer responses: comparison with other customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 7(1), pages 167-182, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jtourh:v:6:y:2025:i:2:p:80-:d:1651954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.