IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i8p1361-d106667.html
   My bibliography  Save this article

Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region

Author

Listed:
  • Menas C. Kafatos

    (Center of Excellence in Earth Systems Modeling and Observations, Chapman University, Orange, CA 92866, USA)

  • Seung Hee Kim

    (Center of Excellence in Earth Systems Modeling and Observations, Chapman University, Orange, CA 92866, USA)

  • Chul-Hee Lim

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

  • Jinwon Kim

    (Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA 90095, USA)

  • Woo-Kyun Lee

    (Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea)

Abstract

This study examines the productivity and resilience of agroecosystems in the Korean Peninsula. Having learned valuable lessons from a Chapman University project funded by the United States Department of Agriculture which concentrated on the semi-arid region of southwestern United States, our joint Korea—Chapman University team has applied similar methodologies to the Korean Peninsula, which is itself an interesting study case in the mid-latitude region. In particular, the Korean Peninsula has unique agricultural environments due to differences in political and socioeconomic systems between South Korea and North Korea. Specifically, North Korea has been suffering from food shortages due to natural disasters, land degradation and political failure. The neighboring developed country, South Korea, has a better agricultural system but a low food self-sufficiency rate. Therefore, assessing crop yield potential (Yp) in the two distinct regions will reveal vulnerability and risks of agroecosystems in the mid-latitude region under climate change and variability and for different conditions.

Suggested Citation

  • Menas C. Kafatos & Seung Hee Kim & Chul-Hee Lim & Jinwon Kim & Woo-Kyun Lee, 2017. "Responses of Agroecosystems to Climate Change: Specifics of Resilience in the Mid-Latitude Region," Sustainability, MDPI, vol. 9(8), pages 1-15, August.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1361-:d:106667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/8/1361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/8/1361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dourte, Daniel R. & Fraisse, Clyde W. & Uryasev, Oxana, 2014. "WaterFootprint on AgroClimate: A dynamic, web-based tool for comparing agricultural systems," Agricultural Systems, Elsevier, vol. 125(C), pages 33-41.
    2. Liu, Junguo & Williams, Jimmy R. & Zehnder, Alexander J.B. & Yang, Hong, 2007. "GEPIC - modelling wheat yield and crop water productivity with high resolution on a global scale," Agricultural Systems, Elsevier, vol. 94(2), pages 478-493, May.
    3. Clapp, Jennifer, 2017. "Food self-sufficiency: Making sense of it, and when it makes sense," Food Policy, Elsevier, vol. 66(C), pages 88-96.
    4. David E. Bloom & Jeffrey D. Sachs, 1998. "Geography, Demography, and Economic Growth in Africa," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 29(2), pages 207-296.
    5. Moen, Thomas N. & Kaiser, Harry M. & Riha, Susan J., 1994. "Regional yield estimation using a crop simulation model: Concepts, methods, and validation," Agricultural Systems, Elsevier, vol. 46(1), pages 79-92.
    6. Christoph Müller & Richard D. Robertson, 2014. "Projecting future crop productivity for global economic modeling," Agricultural Economics, International Association of Agricultural Economists, vol. 45(1), pages 37-50, January.
    7. McCown, R. L. & Hammer, G. L. & Hargreaves, J. N. G. & Holzworth, D. P. & Freebairn, D. M., 1996. "APSIM: a novel software system for model development, model testing and simulation in agricultural systems research," Agricultural Systems, Elsevier, vol. 50(3), pages 255-271.
    8. Beghin, John C. & Bureau, Jean-Christophe & Park, Sung Joon, 2002. "The Cost of Food Self-Sufficiency and Agricultural Protection in South Korea," 2002 International Congress, August 28-31, 2002, Zaragoza, Spain 24879, European Association of Agricultural Economists.
    9. Joel R. Norris & Robert J. Allen & Amato T. Evan & Mark D. Zelinka & Christopher W. O’Dell & Stephen A. Klein, 2016. "Evidence for climate change in the satellite cloud record," Nature, Nature, vol. 536(7614), pages 72-75, August.
    10. Martin, Michael V & McDonald, John A, 1986. "Food Grain Policy in the Republic of Korea: The Economic Costs of Self-sufficiency," Economic Development and Cultural Change, University of Chicago Press, vol. 34(2), pages 315-331, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjing Zeng & Yongde Zhong & Dali Li & Jinyang Deng, 2021. "Classification of Recreation Opportunity Spectrum Using Night Lights for Evidence of Humans and POI Data for Social Setting," Sustainability, MDPI, vol. 13(14), pages 1-14, July.
    2. Sea Jin Kim & Woo-Kyun Lee & Jun Young Ahn & Wona Lee & Soo Jeong Lee, 2021. "Analysis of Developmental Chronology of South Korean Compressed Growth as a Reference from Sustainable Development Perspectives," Sustainability, MDPI, vol. 13(4), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas, Timothy S., 2015. "US maize data reveals adaptation to heat and water stress," IFPRI discussion papers 1485, International Food Policy Research Institute (IFPRI).
    2. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    3. Anton Orlov & Anne Sophie Daloz & Jana Sillmann & Wim Thiery & Clara Douzal & Quentin Lejeune & Carl Schleussner, 2021. "Global Economic Responses to Heat Stress Impacts on Worker Productivity in Crop Production," Economics of Disasters and Climate Change, Springer, vol. 5(3), pages 367-390, October.
    4. Dore, T. & Sebillotte, M. & Meynard, J. M., 1997. "A diagnostic method for assessing regional variations in crop yield," Agricultural Systems, Elsevier, vol. 54(2), pages 169-188, June.
    5. Jordan Hristov & Andrea Toreti & Ignacio Perez Dominguez & Dentener Frank & Thomas Fellmann & Christian Elleby & Andrej Ceglar & Davide Fumagalli & Stefan Niemeyer & Iacopo Cerrani & Lorenzo Panarello, 2020. "Analysis of climate change impacts on EU agriculture by 2050: JRC PESETA IV project – Task 3," JRC Research Reports JRC119632, Joint Research Centre.
    6. Food and Agricultural Organization [FAO], 2016. "Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade," Working Papers id:8512, eSocialSciences.
    7. McNeill, Kelsie & Macdonald, Kiera & Singh, Ashutosh & Binns, Andrew D., 2017. "Food and water security: Analysis of integrated modeling platforms," Agricultural Water Management, Elsevier, vol. 194(C), pages 100-112.
    8. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    9. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    10. Sylvie Démurger & Jeffrey D. Sachs & Wing Thye Woo & Shuming Bao & Gene Chang & Andrew Mellinger, 2002. "Geography, Economic Policy, and Regional Development in China," Asian Economic Papers, MIT Press, vol. 1(1), pages 146-197.
    11. Do, Manh Hung & Nguyen, Trung Thanh & Grote, Ulrike, 2023. "Land consolidation, rice production, and agricultural transformation: Evidence from household panel data for Vietnam," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 157-173.
    12. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Lindh, Thomas & Malmberg, Bo, 2007. "Demographically based global income forecasts up to the year 2050," International Journal of Forecasting, Elsevier, vol. 23(4), pages 553-567.
    14. Maximiliano Marzetti & Rok Spruk, 2023. "Long-Term Economic Effects of Populist Legal Reforms: Evidence from Argentina," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 65(1), pages 60-95, March.
    15. Ola Olsson, 2005. "Geography and institutions: Plausible and implausible linkages," Journal of Economics, Springer, vol. 10(1), pages 167-194, December.
    16. Una Okonkwo Osili & Anna L. Paulson, 2006. "What can we learn about financial access from U.S. immigrants?," Working Paper Series WP-06-25, Federal Reserve Bank of Chicago.
    17. Rahman, Tauhidur & Mittelhammer, Ron C. & Wandschneider, Philip R., 2011. "Measuring quality of life across countries: A multiple indicators and multiple causes approach," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 40(1), pages 43-52, February.
    18. Alvar Kangur, 2016. "What Rules in the ‘Deep’ Determinants of Comparative Development?," Research in Economics and Business: Central and Eastern Europe, Tallinn School of Economics and Business Administration, Tallinn University of Technology, vol. 8(1).
    19. Frederick van der Ploeg & Steven Poelhekke, 2007. "Volatility, Financial Development and the Natural Resource Curse," Economics Working Papers ECO2007/36, European University Institute.
    20. Eckart Woertz, 2020. "Wither the self-sufficiency illusion? Food security in Arab Gulf States and the impact of COVID-19," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(4), pages 757-760, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:8:p:1361-:d:106667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.