IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Model Estimation of Water Use Efficiency for Soil Conservation in the Lower Heihe River Basin, Northwest China during 2000–2008

Listed author(s):
  • Haiming Yan

    ()

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
    These authors contributed equally to this work.)

  • Jinyan Zhan

    ()

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Bing Liu

    ()

    (College of Geomatics, Shandong University of Science and Technology, Qingdao 266590, China
    These authors contributed equally to this work.)

  • Yongwei Yuan

    ()

    (Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China)

Registered author(s):

    There has been very limited research on water use efficiency for soil conservation (WUE-SC) in typical water scarce regions such as the lower Heihe River Basin, where there is serious wind erosion and the soil conservation service plays a key role in guaranteeing the ecological safety of Northern China. The soil conservation service, which was represented by the soil conservation amount (SC), was first estimated with an experiment-based model in this study. Then, the WUE-SC ( i.e. , SC/ET) was calculated on the basis of evapotranspiration (ET) data, and management implications were finally discussed. The results indicated the WUE-SC ranged between 0–98.69 t mm −1 , and it first decreased and then increased on the whole during 2000–2008. Besides, the inter-annual variation of WUE-SC was mainly due to change in the potential soil loss. In addition, the WUE-SC showed significant spatial heterogeneity, and the average WUE-SC of the whole study area was very low due to spatiotemporal inconsistency between the potential soil loss and the vegetation coverage rate. Although there are some uncertainties, these results still can provide local managers with valuable information for water resource utilization and ecosystem management to improve water use efficiency.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.mdpi.com/2071-1050/6/9/6250/pdf
    Download Restriction: no

    File URL: http://www.mdpi.com/2071-1050/6/9/6250/
    Download Restriction: no

    Article provided by MDPI, Open Access Journal in its journal Sustainability.

    Volume (Year): 6 (2014)
    Issue (Month): 9 (September)
    Pages: 1-17

    as
    in new window

    Handle: RePEc:gam:jsusta:v:6:y:2014:i:9:p:6250-6266:d:40165
    Contact details of provider: Web page: http://www.mdpi.com/

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Deng, Xiangzheng & Huang, Jikun & Rozelle, Scott & Uchida, Emi, 2008. "Growth, population and industrialization, and urban land expansion of China," Journal of Urban Economics, Elsevier, vol. 63(1), pages 96-115, January.
    2. Hou, L.G. & Xiao, H.L. & Si, J.H. & Xiao, S.C. & Zhou, M.X. & Yang, Y.G., 2010. "Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China," Agricultural Water Management, Elsevier, vol. 97(2), pages 351-356, February.
    3. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    4. M. Mardikis & D. Kalivas & V. Kollias, 2005. "Comparison of Interpolation Methods for the Prediction of Reference Evapotranspiration—An Application in Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(3), pages 251-278, June.
    5. Sutton, Paul C. & Costanza, Robert, 2002. "Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation," Ecological Economics, Elsevier, vol. 41(3), pages 509-527, June.
    6. Faramarzi, Monireh & Yang, Hong & Schulin, Rainer & Abbaspour, Karim C., 2010. "Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production," Agricultural Water Management, Elsevier, vol. 97(11), pages 1861-1875, November.
    7. Xu, Zhigang & Xu, Jintao & Deng, Xiangzheng & Huang, Jikun & Uchida, Emi & Rozelle, Scott, 2006. "Grain for Green versus Grain: Conflict between Food Security and Conservation Set-Aside in China," World Development, Elsevier, vol. 34(1), pages 130-148, January.
    8. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    9. Prato, Tony, 1999. "Multiple attribute decision analysis for ecosystem management," Ecological Economics, Elsevier, vol. 30(2), pages 207-222, August.
    10. Batchelor, Charles, 1999. "Improving water use efficiency as part of integrated catchment management," Agricultural Water Management, Elsevier, vol. 40(2-3), pages 249-263, May.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:9:p:6250-6266:d:40165. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (XML Conversion Team)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.