IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i20p9193-d1773122.html
   My bibliography  Save this article

Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province

Author

Listed:
  • Yilin Lin

    (Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Natural Resources Intelligent Governance Industry–University–Research Integration Innovation Base, Kunming University of Science and Technology, Kunming 650093, China)

  • Fengru Liu

    (Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Natural Resources Intelligent Governance Industry–University–Research Integration Innovation Base, Kunming University of Science and Technology, Kunming 650093, China)

  • Zhiyuan Ma

    (Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Natural Resources Intelligent Governance Industry–University–Research Integration Innovation Base, Kunming University of Science and Technology, Kunming 650093, China)

  • Junsan Zhao

    (Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Natural Resources Intelligent Governance Industry–University–Research Integration Innovation Base, Kunming University of Science and Technology, Kunming 650093, China)

  • Han Xue

    (Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China
    Natural Resources Intelligent Governance Industry–University–Research Integration Innovation Base, Kunming University of Science and Technology, Kunming 650093, China)

Abstract

Ecosystem services provide the scientific foundation and optimization objectives for constructing ecological security patterns, and their spatial characteristics directly affect planning decisions such as ecological source identification and corridor layout. However, current methods for constructing ecological security patterns rely excessively on static spatial optimization of landscape structure and ecological processes, while overlooking the dynamic variations in ecosystem service values under climate change. Taking Yunnan Province as a case study, this paper calculates ecosystem service values, analyzes their spatiotemporal variations, and based on ecosystem service value hotspots, applies the MSPA model and circuit theory to identify ecological sources, corridors, pinch points, barrier areas, and improvement areas. On this basis, we construct and optimize the ecological security pattern of Yunnan Province and propose ecological protection strategies. The results show that: (1) From 2000 to 2030, ecosystem service values in Yunnan exhibit significant spatiotemporal heterogeneity. From 2000 to 2020, they first declined and then increased, with aquatic ecosystems contributing the most. Under future climate scenarios, ecosystem service values continue to increase, with the greatest growth under the SSP2-4.5 scenario. The spatial pattern is characterized by higher values in the central region and lower values in the eastern and western areas. (2) In 2020, 56 ecological sources were identified; under the SSP1-1.9 scenario, 61 were identified, while 57 were identified under both SSP2-4.5 and SSP5-8.5 scenarios. These sources are mainly distributed in northwestern Yunnan and the Nujiang and Lancang River basins, presenting a “more in the west, fewer in the east” pattern. (3) In 2020, 132 ecological corridors and 74 pinch points were identified. By 2030, under SSP1-1.9, there are 149 corridors and 84 pinch points; under SSP2-4.5, 135 corridors and 55 pinch points; and under SSP5-8.5, 134 corridors and 60 pinch points. (4) By integrating results across multiple scenarios, an ecological security pattern characterized as “three screens, two zones, six corridors, and multiple points” is constructed. Based on regional ecological background characteristics, differentiated strategies for ecological security protection of territorial space are proposed. This study provides a scientific reference for the synergistic optimization of ecosystem services and ecological security patterns under climate change.

Suggested Citation

  • Yilin Lin & Fengru Liu & Zhiyuan Ma & Junsan Zhao & Han Xue, 2025. "Constructing an Ecological Security Pattern Coupled with Climate Change and Ecosystem Service Valuation: A Case Study of Yunnan Province," Sustainability, MDPI, vol. 17(20), pages 1-29, October.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9193-:d:1773122
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/20/9193/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/20/9193/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hazem T. Abd El-Hamid & Hoda Nour-Eldin & Nazih Y. Rebouh & Ahmed M. El-Zeiny, 2022. "Past and Future Changes of Land Use/Land Cover and the Potential Impact on Ecosystem Services Value of Damietta Governorate, Egypt," Land, MDPI, vol. 11(12), pages 1-15, November.
    2. Liang Lv & Shihao Zhang & Jie Zhu & Ziming Wang & Zhe Wang & Guoqing Li & Chen Yang, 2022. "Ecological Restoration Strategies for Mountainous Cities Based on Ecological Security Patterns and Circuit Theory: A Case of Central Urban Areas in Chongqing, China," IJERPH, MDPI, vol. 19(24), pages 1-21, December.
    3. Di Zhou & Wei Song, 2021. "Identifying Ecological Corridors and Networks in Mountainous Areas," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    4. Yongyong Fu & Wenjia Zhang & Feng Gao & Xu Bi & Ping Wang & Xiaojun Wang, 2024. "Ecological Security Pattern Construction in Loess Plateau Areas—A Case Study of Shanxi Province, China," Land, MDPI, vol. 13(5), pages 1-20, May.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Ziyang Wang & Peiji Shi & Jing Shi & Xuebin Zhang & Litang Yao, 2023. "Research on Land Use Pattern and Ecological Risk of Lanzhou–Xining Urban Agglomeration from the Perspective of Terrain Gradient," Land, MDPI, vol. 12(5), pages 1-20, April.
    7. Chunguang Hu & Ziyi Wang & Yu Wang & Dongqi Sun & Jingxiang Zhang, 2022. "Combining MSPA-MCR Model to Evaluate the Ecological Network in Wuhan, China," Land, MDPI, vol. 11(2), pages 1-17, January.
    8. Tonghui Yu & Shanshan Jia & Binqian Dai & Xufeng Cui, 2025. "Spatial Configuration and Layout Optimization of the Ecological Networks in a High-Population-Density Urban Agglomeration: A Case Study of the Central Plains Urban Agglomeration," Land, MDPI, vol. 14(4), pages 1-30, April.
    9. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    2. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    3. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    4. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    5. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    6. Trutnevyte, Evelina & McDowall, Will & Tomei, Julia & Keppo, Ilkka, 2016. "Energy scenario choices: Insights from a retrospective review of UK energy futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 326-337.
    7. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    8. Coppens, Léo & Venmans, Frank, 2025. "The welfare properties of climate targets," Ecological Economics, Elsevier, vol. 228(C).
    9. De Cian, Enrica & Wing, Ian Sue, "undated". "Global Energy Demand in a Warming Climate," EIA: Climate Change: Economic Impacts and Adaptation 232222, Fondazione Eni Enrico Mattei (FEEM).
    10. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    11. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    12. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    13. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    14. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    15. Shiva Zargar & Yuan Yao & Qingshi Tu, 2022. "A review of inventory modeling methods for missing data in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1676-1689, October.
    16. Sánchez-García, Daniel & Bienvenido-Huertas, David & Kim, Jungsoo & Pisello, Anna Laura, 2025. "Exploring the energy implications of human thermal adaptation to hot temperatures in present and future scenarios: a parametric simulation study," Energy, Elsevier, vol. 325(C).
    17. Giuseppe Pulighe & Flavio Lupia & Valentina Manente, 2025. "Climate-Driven Invasion Risks of Japanese Beetle ( Popillia japonica Newman) in Europe Predicted Through Species Distribution Modelling," Agriculture, MDPI, vol. 15(7), pages 1-14, March.
    18. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    19. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.
    20. Francesco Lamperti & Valentina Bosetti & Andrea Roventini & Massimo Tavoni, 2019. "The public costs of climate-induced financial instability," Nature Climate Change, Nature, vol. 9(11), pages 829-833, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:20:p:9193-:d:1773122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.