IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p768-d1627814.html
   My bibliography  Save this article

Spatial Configuration and Layout Optimization of the Ecological Networks in a High-Population-Density Urban Agglomeration: A Case Study of the Central Plains Urban Agglomeration

Author

Listed:
  • Tonghui Yu

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

  • Shanshan Jia

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

  • Binqian Dai

    (School of Business, Xinyang Normal University, Xinyang 464000, China)

  • Xufeng Cui

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China
    Center for Land Economics, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

The construction of ecological networks and the optimization of ecological spatial layouts are essential for maintaining regional ecological security and promoting sustainable development, especially in high-population-density urban agglomerations. This study employs the Central Plains Urban Agglomeration (CPUA) as a case study to establish an ecological network through a quantitative assessments of land use/cover change (LUCC) and ecosystem service value (ESV), utilizing the morphological spatial pattern analysis (MSPA) methods and tools such as Linkage Mapper to further optimize ecological spatial layouts. The findings reveal the following: (1) The land use structure within the CPUA experienced notable shifts. The magnitude of land use changes ranked as follows: construction land > cultivated land > grassland > waterbody > forest > bare land. (2) The southwestern mountainous and hilly regions, designated as high ESV areas, primarily rely on water conservation and soil retention functions. In contrast, the central and western regions, characterized by low ESVs, are dominated by construction land and cultivated land, and are significantly influenced by urbanization and agricultural activities. (3) An ecological network system was developed based on the region’s natural geographic features, incorporating 20 ecological sources covering approximately 21,434.70 km 2 , and 36 ecological corridors with a combined length of around 2795.19 km. This network extends in a north–south direction through the central and western parts of the CPUA. (4) Considering the spatial changes in land use/cover and ESVs, an optimized ecological spatial layout of “five belts, six zones, multiple clusters, and corridors” was proposed, along with differentiated restoration strategies tailored to address specific ecological issues in different regions. This study aims to harmonize regional ecological protection with economic development, providing a scientific foundation and valuable reference for ecological conservation and sustainable spatial planning policies.

Suggested Citation

  • Tonghui Yu & Shanshan Jia & Binqian Dai & Xufeng Cui, 2025. "Spatial Configuration and Layout Optimization of the Ecological Networks in a High-Population-Density Urban Agglomeration: A Case Study of the Central Plains Urban Agglomeration," Land, MDPI, vol. 14(4), pages 1-30, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:768-:d:1627814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Guoyu & Li, Jing & Liu, Xianfeng & Li, Boyan & Zhang, Ya, 2024. "Social-ecological network of peri-urban forest in urban expansion: A case study of urban agglomeration in Guanzhong Plain, China," Land Use Policy, Elsevier, vol. 139(C).
    2. Han, Baolong & Liu, Hongxiao & Wang, Rusong, 2015. "Urban ecological security assessment for cities in the Beijing–Tianjin–Hebei metropolitan region based on fuzzy and entropy methods," Ecological Modelling, Elsevier, vol. 318(C), pages 217-225.
    3. Keming Xiang & Liang Chen & Wenyu Li & Zhengwei He, 2024. "Construction and Optimization Strategy of Ecological Security Pattern in County-Level Cities under Spatial and Temporal Variation of Ecosystem Services: Case Study of Mianzhu, China," Land, MDPI, vol. 13(7), pages 1-20, June.
    4. Yue Lin & Wenzhan An & Muye Gan & AmirReza Shahtahmassebi & Ziran Ye & Lingyan Huang & Congmou Zhu & Lu Huang & Jing Zhang & Ke Wang, 2021. "Spatial Grain Effects of Urban Green Space Cover Maps on Assessing Habitat Fragmentation and Connectivity," Land, MDPI, vol. 10(10), pages 1-18, October.
    5. Sutton, Paul C. & Anderson, Sharolyn J. & Costanza, Robert & Kubiszewski, Ida, 2016. "The ecological economics of land degradation: Impacts on ecosystem service values," Ecological Economics, Elsevier, vol. 129(C), pages 182-192.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasi Tian & Lei Wang, 2020. "The Effect of Urban-Suburban Interaction on Urbanization and Suburban Ecological Security: A Case Study of Suburban Wuhan, Central China," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    2. Mingxin Wen & Ting Zhang & Long Li & Longqian Chen & Sai Hu & Jia Wang & Weiqiang Liu & Yu Zhang & Lina Yuan, 2021. "Assessment of Land Ecological Security and Analysis of Influencing Factors in Chaohu Lake Basin, China from 1998–2018," Sustainability, MDPI, vol. 13(1), pages 1-28, January.
    3. Merica Slišković & Katja Božić & Jelena Žanić Mikuličić & Ines Kolanović, 2024. "Addressing the Significance of the Union List with a Focus on Marine Invasive Alien Species Impacts," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    4. Yang, Yuanyuan & Bao, Wenkai & Liu, Yansui, 2020. "Scenario simulation of land system change in the Beijing-Tianjin-Hebei region," Land Use Policy, Elsevier, vol. 96(C).
    5. Lingge Zhang & Ningke Hu, 2021. "Spatial Variation and Terrain Gradient Effect of Ecosystem Services in Heihe River Basin over the Past 20 Years," Sustainability, MDPI, vol. 13(20), pages 1-26, October.
    6. Zhuo Li & Jiachen Liu & Rongqiang Ma & Wenhui Xie & Xiaoyu Zhao & Zhaohai Wang & Baolei Zhang & Le Yin, 2024. "Construction of Ecological Security Pattern Based on Ecosystem Services, Sensitivity, Connectivity, and Resistance—A Case Study in the Huang-Huai-Hai Plain," Land, MDPI, vol. 13(12), pages 1-18, December.
    7. Fangfang Xun & Yecui Hu & Ling Lv & Jinhui Tong, 2017. "Farmers’ Awareness of Ecosystem Services and the Associated Policy Implications," Sustainability, MDPI, vol. 9(9), pages 1-13, September.
    8. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    9. Kangkang Gu & Luyao Ma & Jian Xu & Haoran Yu & Xinmu Zhang, 2023. "Spatiotemporal Evolution Characteristics and Driving Factors of Water Conservation Service in Jiangxi Province from 2001 to 2020," Sustainability, MDPI, vol. 15(15), pages 1-24, August.
    10. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    11. Yihe Huang & Shouyun Shen & Wenmin Hu & Yurou Li & Guo Li, 2022. "Construction of Cultural Heritage Tourism Corridor for the Dissemination of Historical Culture: A Case Study of Typical Mountainous Multi-Ethnic Area in China," Land, MDPI, vol. 12(1), pages 1-17, December.
    12. Yannay Casas-Ledón & Javiera Silva & Sebastián Larrere & Yenisleidy Martínez-Martínez, 2024. "Sustainability of Agricultural and Forestry Systems: Resource Footprint Approach," Sustainability, MDPI, vol. 16(23), pages 1-14, November.
    13. Henghui Xi & Wanglai Cui & Li Cai & Mengyuan Chen & Chenglei Xu, 2021. "Evaluation and Prediction of Ecosystem Service Value in the Zhoushan Islands Based on LUCC," Sustainability, MDPI, vol. 13(4), pages 1-13, February.
    14. Gianluca Egidi & Luca Salvati & Pavel Cudlin & Rosanna Salvia & Manuela Romagnoli, 2020. "A New ‘Lexicon’ of Land Degradation: Toward a Holistic Thinking for Complex Socioeconomic Issues," Sustainability, MDPI, vol. 12(10), pages 1-19, May.
    15. Mengting Chen & Liang Zheng & Dike Zhang & Jiangfeng Li, 2022. "Spatio-Temporal Evolution and Obstacle Factors Analysis of Tourism Ecological Security in Huanggang Dabieshan UNESCO Global Geopark," IJERPH, MDPI, vol. 19(14), pages 1-22, July.
    16. Mortoja, Md. Golam & Yigitcanlar, Tan & Mayere, Severine, 2020. "What is the most suitable methodological approach to demarcate peri-urban areas? A systematic review of the literature," Land Use Policy, Elsevier, vol. 95(C).
    17. Jing Ning & Jianjun Jin & Foyuan Kuang & Xinyu Wan & Chenyang Zhang & Tong Guan, 2019. "The Valuation of Grassland Ecosystem Services in Inner Mongolia of China and Its Spatial Differences," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
    18. Pei-Xian Liu & Ying Liu & Tie-Nan Li & Wei-Wei Guo & A-Long Yang & Xiao Yang & En-Zhong Li & Zheng-Jun Wang, 2024. "Identification and Trend Analysis of Ecological Security Pattern in Mudanjiang City Based on MSPA-MCR-PLUS Model," Sustainability, MDPI, vol. 16(22), pages 1-24, November.
    19. Ruethai Onbhuddha & Bingying Ma & Chavatip Chindavijak & Seiichi Ogata, 2024. "The Interlink between Stakeholder Influence and Sustainable Practices: A Case Study of Thai Agriculture Enterprise," Sustainability, MDPI, vol. 16(20), pages 1-23, October.
    20. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:768-:d:1627814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.