IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i19p8707-d1759861.html
   My bibliography  Save this article

An Integrated BWM–GIS–DEA Approach for the Site Selection of Pallet Pooling Service Centers

Author

Listed:
  • Yu Du

    (Transportation Institute, Inner Mongolia University, Hohhot 010021, China)

  • Jianwei Ren

    (Transportation Institute, Inner Mongolia University, Hohhot 010021, China)

  • Xinyu Xiang

    (Transportation Institute, Inner Mongolia University, Hohhot 010021, China)

  • Chenxi Feng

    (Transportation Institute, Inner Mongolia University, Hohhot 010021, China)

  • Rui Zhao

    (Transportation Institute, Inner Mongolia University, Hohhot 010021, China)

Abstract

The scientific site selection for pallet pooling systems is pivotal to enhancing logistics efficiency and environmental performance. However, previous studies mainly adopt single-objective optimization approaches, which fail to simultaneously account for economic, environmental, and operational performance factors. The contribution of this paper lies in proposing an integrated decision-making method based on BWM-GIS-DEA to address the site selection problem for pallet pooling service centers. First, the Best-Worst Method (BWM) determines the weights of 13 criteria across 5 dimensions: economic, transportation, geographical location, technological, and service coverage. These criteria include factors such as the distribution density of pallet manufacturers and potential customers. Then, suitability maps are generated using Geographic Information System (GIS) spatial overlay technology to identify 6 alternative cities. Finally, a two-layer Data Envelopment Analysis (DEA) model is applied to measure the efficiency of the alternative sites. This method is applied in Inner Mongolia, China, and Ejin Horo Banner is identified as the optimal site with an efficiency score of 1.156, demonstrating superior resource allocation characterized by lower land costs and higher pallet turnover rates. The proposed framework not only fills a methodological gap in sustainable facility location research but also provides a replicable and policy-ready tool to guide practical decision-making.

Suggested Citation

  • Yu Du & Jianwei Ren & Xinyu Xiang & Chenxi Feng & Rui Zhao, 2025. "An Integrated BWM–GIS–DEA Approach for the Site Selection of Pallet Pooling Service Centers," Sustainability, MDPI, vol. 17(19), pages 1-29, September.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8707-:d:1759861
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/19/8707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/19/8707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hsu, Wen-Kai & Huang, Show-Hui & Le, Thu Ngo Ngoc & Huynh, Nguyen Tan & Wang, Ding-Ji, 2025. "Assessing container terminals’ efficiency from the sustainable development perspective: The BWM-GRA-SBM model," Transport Policy, Elsevier, vol. 162(C), pages 443-455.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Riccardo Accorsi & Giulia Baruffaldi & Riccardo Manzini & Chiara Pini, 2019. "Environmental Impacts of Reusable Transport Items: A Case Study of Pallet Pooling in a Retailer Supply Chain," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
    5. Carrano, Andres L. & Pazour, Jennifer A. & Roy, Debjit & Thorn, Brian K., 2015. "Selection of pallet management strategies based on carbon emissions impact," International Journal of Production Economics, Elsevier, vol. 164(C), pages 258-270.
    6. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    7. Badri Ahmadi, Hadi & Kusi-Sarpong, Simonov & Rezaei, Jafar, 2017. "Assessing the social sustainability of supply chains using Best Worst Method," Resources, Conservation & Recycling, Elsevier, vol. 126(C), pages 99-106.
    8. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    9. Rezaei, Jafar & van Roekel, Wilco S. & Tavasszy, Lori, 2018. "Measuring the relative importance of the logistics performance index indicators using Best Worst Method," Transport Policy, Elsevier, vol. 68(C), pages 158-169.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Jianghong & Guo, Ping & Xu, Guangyi & Xu, Gangyan & Ning, Yu, 2024. "An integrated decision framework for resilient sustainable waste electric vehicle battery recycling transfer station site selection," Applied Energy, Elsevier, vol. 373(C).
    2. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    3. Svetlana Ratner & Andrey Lychev & Aleksei Rozhnov & Igor Lobanov, 2021. "Efficiency Evaluation of Regional Environmental Management Systems in Russia Using Data Envelopment Analysis," Mathematics, MDPI, vol. 9(18), pages 1-21, September.
    4. Shashank Bansal & Satya Prakash Mani & Himanshu Gupta & Shipra Maurya, 2023. "Sustainable development of the green bond markets in India: Challenges and strategies," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 237-252, February.
    5. Mingxuan Lu & Ruhe Xie & Peirong Chen & Yifeng Zou & Jie Tang, 2019. "Green Transportation and Logistics Performance: An Improved Composite Index," Sustainability, MDPI, vol. 11(10), pages 1-17, May.
    6. Laura Calzada-Infante & Ana María López-Narbona & Alberto Núñez-Elvira & Javier Orozco-Messana, 2020. "Assessing the Efficiency of Sustainable Cities Using an Empirical Approach," Sustainability, MDPI, vol. 12(7), pages 1-13, March.
    7. Sala-Garrido, Ramon & Mocholi-Arce, Manuel & Maziotis, Alexandros & Molinos-Senante, María, 2023. "The carbon and production performance of water utilities: Evidence from the English and Welsh water industry," Structural Change and Economic Dynamics, Elsevier, vol. 64(C), pages 292-300.
    8. Ramón Sala-Garrido & Manuel Mocholí-Arce & María Molinos-Senante & Alexandros Maziotis, 2021. "Comparing Operational, Environmental and Eco-Efficiency of Water Companies in England and Wales," Energies, MDPI, vol. 14(12), pages 1-14, June.
    9. Mohammad Tavassoli & Mahsa Ghandehari & Masoud Taherinia, 2023. "Rang-adjusted measure: modelling and computational aspects from internal and external perspectives for network DEA," Operational Research, Springer, vol. 23(4), pages 1-34, December.
    10. Badunenko, Oleg & Galeotti, Marzio & Hunt, Lester C., "undated". "Better to grow or better to improve? Measuring environmental efficiency in OECD countries with a Stochastic Environmental Kuznets Frontier," FEEM Working Papers 316226, Fondazione Eni Enrico Mattei (FEEM).
    11. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    12. Arsen Benga & Glediana Zeneli (Foto) & María Jesús Delgado‑Rodríguez & Sonia Lucas Santos, 2025. "Company efforts and environmental efficiency: evidence from European railways considering market-based emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 27(5), pages 9977-10012, May.
    13. Fukuyama, Hirofumi & Sekitani, Kazuyuki, 2012. "Decomposing the efficient frontier of the DEA production possibility set into a smallest number of convex polyhedrons by mixed integer programming," European Journal of Operational Research, Elsevier, vol. 221(1), pages 165-174.
    14. Ruchuan Zhang & Aijun Li & Davo Ayuba Dahoro, 2024. "A new approach for vehicle-health system measurement by network data envelopment analysis and an application in the USA," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(6), pages 14693-14727, June.
    15. Juan Aparicio & Magdalena Kapelko & Bernhard Mahlberg & Jose L. Sainz-Pardo, 2017. "Measuring input-specific productivity change based on the principle of least action," Journal of Productivity Analysis, Springer, vol. 47(1), pages 17-31, February.
    16. Chambers, Robert G., 2024. "Numeraire choice, shadow profit, and inefficiency measurement," European Journal of Operational Research, Elsevier, vol. 319(2), pages 658-668.
    17. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    18. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    19. Pastor, Jesus T. & Lovell, C.A. Knox & Aparicio, Juan, 2020. "Defining a new graph inefficiency measure for the proportional directional distance function and introducing a new Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 281(1), pages 222-230.
    20. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:19:p:8707-:d:1759861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.