IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i14p6422-d1700983.html
   My bibliography  Save this article

Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination

Author

Listed:
  • Xiaojun Shen

    (School of Economics and Management, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China)

Abstract

In China, the recycling system for waste tires is characterized by high output but low standardized recovery rates. This study examines the environmental and health risks caused by non-compliant treatment by individual recyclers and explores the barriers to the large-scale adoption of Pyrolysis Technology. A Tripartite Evolutionary Game Model involving pyrolysis plants, waste tire recyclers, and government regulators is developed. The model incorporates pollutants from pretreatment and pyrolysis processes into a unified metric—Carbon Dioxide Equivalent (CO 2 -eq)—based on Global Warming Potential (GWP), and designs a Differential Carbon Taxation mechanism accordingly. The strategy dynamics and stability conditions for Evolutionary Stable Strategies (ESS) are analyzed. Multi-scenario numerical simulations explore how key parameter changes influence evolutionary trajectories and equilibrium outcomes. Six typical equilibrium states are identified, along with the critical conditions for achieving environmentally friendly results. Based on theoretical analysis and simulation results, targeted policy recommendations are proposed to promote standardized waste tire pyrolysis: (1) Establish a phased dynamic carbon tax with supporting subsidies; (2) Build a green market cultivation and price stabilization system; (3) Implement performance-based differential incentives; (4) Strengthen coordination between central environmental inspections and local carbon tax enforcement.

Suggested Citation

  • Xiaojun Shen, 2025. "Tripartite Evolutionary Game Analysis of Waste Tire Pyrolysis Promotion: The Role of Differential Carbon Taxation and Policy Coordination," Sustainability, MDPI, vol. 17(14), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6422-:d:1700983
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/14/6422/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/14/6422/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. ., 2017. "The concept of economic welfare," Chapters, in: Morality and Power, chapter 6, pages 59-68, Edward Elgar Publishing.
    2. Hao, Xinyu & Liu, Guangfu & Zhang, Xiaoling & Dong, Liang, 2022. "The coevolution mechanism of stakeholder strategies in the recycled resources industry innovation ecosystem: the view of evolutionary game theory," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    3. Lyon, Thomas P. & Maxwell, John W., 2003. "Self-regulation, taxation and public voluntary environmental agreements," Journal of Public Economics, Elsevier, vol. 87(7-8), pages 1453-1486, August.
    4. He, Yong & Jiang, Ruipeng & Liao, Nuo, 2023. "How to promote the Chinese Certified Emission Reduction scheme in the carbon market? A study based on tripartite evolutionary game model," Energy, Elsevier, vol. 285(C).
    5. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    6. Lawrence H. Goulder & Ian W. H. Parry, 2008. "Instrument Choice in Environmental Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(2), pages 152-174, Summer.
    7. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buchholz Wolfgang & Heindl Peter, 2015. "Ökonomische Herausforderungen des Klimawandels," Perspektiven der Wirtschaftspolitik, De Gruyter, vol. 16(4), pages 324-350, December.
    2. Kathleen Segerson, 2013. "Voluntary Approaches to Environmental Protection and Resource Management," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 161-180, June.
    3. Jonathan M. Lee, 2015. "The Impact of Heterogeneous NOx Regulations on Distributed Electricity Generation in U.S. Manufacturing," Working Papers 15-12, Center for Economic Studies, U.S. Census Bureau.
    4. Robert W. Hahn & Robert N. Stavins, 2011. "The Effect of Allowance Allocations on Cap-and-Trade System Performance," Journal of Law and Economics, University of Chicago Press, vol. 54(S4), pages 267-294.
    5. Weber, Thomas A. & Neuhoff, Karsten, 2010. "Carbon markets and technological innovation," Journal of Environmental Economics and Management, Elsevier, vol. 60(2), pages 115-132, September.
    6. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    7. Julien Daubanes & Jean-Charles Rochet, 2019. "The Rise of NGO Activism," American Economic Journal: Economic Policy, American Economic Association, vol. 11(4), pages 183-212, November.
    8. Spyros Arvanitis & Michael Peneder & Christian Rammer & Tobias Stucki & Martin Wörter, 2016. "Competitiveness and ecological impacts of green energy technologies: firm-level evidence for the DACH region," KOF Working papers 16-420, KOF Swiss Economic Institute, ETH Zurich.
    9. Barbara Annicchiarico & Stefano Carattini & Carolyn Fischer & Garth Heutel, 2022. "Business Cycles and Environmental Policy: A Primer," Environmental and Energy Policy and the Economy, University of Chicago Press, vol. 3(1), pages 221-253.
    10. Okada, Akira, 2023. "A dynamic climate negotiation game achieving full cooperation," Journal of Economic Behavior & Organization, Elsevier, vol. 214(C), pages 657-669.
    11. Filippo Maria D’Arcangelo & Ilai Levin & Alessia Pagani & Mauro Pisu & Åsa Johansson, 2022. "A framework to decarbonise the economy," OECD Economic Policy Papers 31, OECD Publishing.
    12. Geng Qin & Hanzhi Yu, 2023. "Rescuing the Paris Agreement: Improving the Global Experimentalist Governance by Reclassifying Countries," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    13. Coggan, Anthea & Whitten, Stuart M. & Bennett, Jeff, 2010. "Influences of transaction costs in environmental policy," Ecological Economics, Elsevier, vol. 69(9), pages 1777-1784, July.
    14. Sato, Misato & Rafaty, Ryan & Calel, Raphael & Grubb, Michael, 2022. "Allocation, allocation, allocation! The political economy of the development of the European Union Emissions Trading System," LSE Research Online Documents on Economics 115431, London School of Economics and Political Science, LSE Library.
    15. Kalsbach, Oliver & Rausch, Sebastian, 2024. "Pricing carbon in a multi-sector economy with social discounting," Journal of Environmental Economics and Management, Elsevier, vol. 125(C).
    16. Bruno, Ellen M. & Jessoe, Katrina, 2021. "Missing markets: Evidence on agricultural groundwater demand from volumetric pricing," Journal of Public Economics, Elsevier, vol. 196(C).
    17. Rausch, Sebastian & Yonezawa, Hidemichi, 2023. "Green technology policies versus carbon pricing: An intergenerational perspective," European Economic Review, Elsevier, vol. 154(C).
    18. Robert S. Pindyck, 2017. "Coase Lecture—Taxes, Targets and the Social Cost of Carbon," Economica, London School of Economics and Political Science, vol. 84(335), pages 345-364, July.
    19. Baranski, Andrzej & Kim, Duk Gyoo, 2024. "Sharing the burden of negative externalities: A tale of gridlock and accountability elusion," Ecological Economics, Elsevier, vol. 224(C).
    20. Tateishi, Henrique Ryosuke & Bragagnolo, Cassiano & de Faria, Rosane Nunes, 2020. "Economic and environmental efficiencies of greenhouse gases’ emissions under institutional influence," Technological Forecasting and Social Change, Elsevier, vol. 161(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:14:p:6422-:d:1700983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.