IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i13p5691-d1683629.html
   My bibliography  Save this article

Development of an Innovative Landfill Gas Purification System in Latvia

Author

Listed:
  • Laila Zemite

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, 12-1 Azenes Str., LV-1048 Riga, Latvia)

  • Davids Kronkalns

    (Faculty of Computer Science, Information Technology and Energy, Riga Technical University, 12-1 Azenes Str., LV-1048 Riga, Latvia)

  • Andris Backurs

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, 5 J. Cakstes Blvd., LV-3001 Jelgava, Latvia)

  • Leo Jansons

    (Faculty of Engineering Economics and Management, Riga Technical University, 6 Kalnciema Str. 210, LV-1048 Riga, Latvia)

  • Nauris Eglitis

    (SIA “G2.LV”, Palasta Street 10, LV-1050 Riga, Latvia)

  • Patrick Cnubben

    (Hydrogen Architects, 9728 RJ Groningen, The Netherlands)

  • Sanda Lapuke

    (Faculty of Engineering Economics and Management, Riga Technical University, 6 Kalnciema Str. 210, LV-1048 Riga, Latvia)

Abstract

The management of municipal solid waste remains a critical environmental and energy challenge across the European Union (EU), where a significant portion of waste still ends up in landfills, generating landfill gas (LFG) rich in methane and harmful impurities. In Latvia, despite national strategies to enhance circularity, untreated LFG is underutilized due to inadequate purification infrastructure, particularly in meeting biomethane standards. This study addressed this gap by proposing and evaluating an innovative, multistep LFG purification system tailored to Latvian conditions, with the aim of enabling the broader use of LFG for energy cogeneration and potentially biomethane injection. The research objective was to design, describe, and preliminarily assess a pilot-scale LFG purification prototype suitable for deployment at Latvia’s largest landfill facility—Landfill A. The methodological approach combined chemical composition analysis of LFG, technical site assessments, and engineering modelling of a five-step purification system, including desulfurization, cooling and moisture removal, siloxane filtration, pumping stabilization, and activated carbon treatment. The system was designed for a nominal gas flow rate of 1500 m 3 /h and developed with modular scalability in mind. The results showed that raw LFG from Landfill A contains high concentrations of hydrogen sulfide, siloxanes, and volatile organic compounds (VOCs), far exceeding permissible thresholds for biomethane applications. The designed prototype demonstrated the technical feasibility of reducing hydrogen sulfide (H 2 S) concentrations to <7 mg/m 3 and siloxanes to ≤0.3 mg/m 3 , thus aligning the purified gas with EU biomethane quality requirements. Infrastructure assessments confirmed that existing electricity, water, and sewage capacities at Landfill A are sufficient to support the system’s operation. The implications of this research suggest that properly engineered LFG purification systems can transform landfills from passive waste sinks into active energy resources, aligning with the EU Green Deal goals and enhancing local energy resilience. It is recommended that further validation be carried out through long-term pilot operation, economic analysis of gas recovery profitability, and adaptation of the system for integration with national gas grids. The prototype provides a transferable model for other Baltic and Eastern European contexts, where LFG remains an underexploited asset for sustainable energy transitions.

Suggested Citation

  • Laila Zemite & Davids Kronkalns & Andris Backurs & Leo Jansons & Nauris Eglitis & Patrick Cnubben & Sanda Lapuke, 2025. "Development of an Innovative Landfill Gas Purification System in Latvia," Sustainability, MDPI, vol. 17(13), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5691-:d:1683629
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/13/5691/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/13/5691/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niccolò Frasi & Elena Rossi & Isabella Pecorini & Renato Iannelli, 2020. "Methane Oxidation Efficiency in Biofiltration Systems with Different Moisture Content Treating Diluted Landfill Gas," Energies, MDPI, vol. 13(11), pages 1-15, June.
    2. Evan K. Paleologos & Abdel-Mohsen O. Mohamed & Dina Mohamed & Moza T. Al Nahyan & Sherine Farouk & Devendra N. Singh, 2025. "Decarbonization of the Waste Industry in the U.S.A. and the European Union," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    3. Peter Sanciolo & Eduardo Rivera & Dimuth Navaratna & Mikel C. Duke, 2022. "Food Waste Diversion from Landfills: A Cost–Benefit Analysis of Existing Technological Solutions Based on Greenhouse Gas Emissions," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    4. Dek Vimean Pheakdey & Vongdala Noudeng & Tran Dang Xuan, 2023. "Landfill Biogas Recovery and Its Contribution to Greenhouse Gas Mitigation," Energies, MDPI, vol. 16(12), pages 1-19, June.
    5. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    6. Kazimierz Gaj, 2020. "Adsorptive Biogas Purification from Siloxanes—A Critical Review," Energies, MDPI, vol. 13(10), pages 1-10, May.
    7. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.
    8. Faisal A. Osra & Huseyin Kurtulus Ozcan & Jaber S. Alzahrani & Mohammad S. Alsoufi, 2021. "Municipal Solid Waste Characterization and Landfill Gas Generation in Kakia Landfill, Makkah," Sustainability, MDPI, vol. 13(3), pages 1-13, January.
    9. Józef Ciuła & Agnieszka Generowicz & Anna Gronba-Chyła & Iwona Wiewiórska & Paweł Kwaśnicki & Mariusz Cygnar, 2024. "Analysis of the Efficiency of Landfill Gas Treatment for Power Generation in a Cogeneration System in Terms of the European Green Deal," Sustainability, MDPI, vol. 16(4), pages 1-16, February.
    10. Józef Ciuła & Elżbieta Sobiecka & Tomasz Zacłona & Paulina Rydwańska & Aneta Oleksy-Gębczyk & Tomasz P. Olejnik & Sławomir Jurkowski, 2024. "Management of the Municipal Waste Stream: Waste into Energy in the Context of a Circular Economy—Economic and Technological Aspects for a Selected Region in Poland," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Zhao & Tao Huang & Michael McGuire, 2012. "From a Literature Review to an Alternative Treatment System for Landfill Gas and Leachate," Challenges, MDPI, vol. 3(2), pages 1-12, December.
    2. Carlos J. Gallego & Juan C. David & I. N. Gomez-Miranda & Sebastián Jaén, 2023. "Quantitative Analysis of Colombian Waste Picker’s Profile," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Jiang-Jiang, Wang & Chun-Fa, Zhang & You-Yin, Jing, 2010. "Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China," Applied Energy, Elsevier, vol. 87(4), pages 1247-1259, April.
    4. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    5. Anna Gronba-Chyła & Agnieszka Generowicz & Paweł Kwaśnicki & Dawid Cycoń & Justyna Kwaśny & Katarzyna Grąz & Krzysztof Gaska & Józef Ciuła, 2022. "Determining the Effectiveness of Street Cleaning with the Use of Decision Analysis and Research on the Reduction in Chloride in Waste," Energies, MDPI, vol. 15(10), pages 1-11, May.
    6. Kaouther Kerboua & Hamza Cheniti & Clyde Falzon Bouvett & Intissar Gasmi & Hani Amir Aouissi & Alexandru-Ionut Petrisor & Maria Boştenaru-Dan, 2025. "A Techno-Ecological Transformative Approach of Municipal Solid Waste Landfill in Upper-Middle-Income Countries Based on Energy Recovery," Sustainability, MDPI, vol. 17(4), pages 1-29, February.
    7. Wei, Dajun & Chen, Alian & Sun, Bo & Zhang, Chenghui, 2016. "Multi-objective optimal operation and energy coupling analysis of combined cooling and heating system," Energy, Elsevier, vol. 98(C), pages 296-307.
    8. Walter Cardoso Satyro & Jose Celso Contador & Jansen Anderson Gomes & Sonia Francisca de Paula Monken & Antonio Pires Barbosa & Flavio Santino Bizarrias & Jose Luiz Contador & Leandro Simplicio Silva , 2024. "Technology-Organization-External-Sustainability (TOES) Framework for Technology Adoption: Critical Analysis of Models for Industry 4.0 Implementation Projects," Sustainability, MDPI, vol. 16(24), pages 1-25, December.
    9. Pérez Belmonte Nancy Merab & Sandoval Torres Sadoth & Belmonte Jiménez Salvador Isidro, 2025. "First-Order Decay Models for the Estimation of Methane Emissions in a Landfill in the Metropolitan Area of Oaxaca City, Mexico," Waste, MDPI, vol. 3(2), pages 1-20, April.
    10. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    11. Zhao, Rui & Xi, Beidou & Liu, Yiyun & Su, Jing & Liu, Silin, 2017. "Economic potential of leachate evaporation by using landfill gas: A system dynamics approach," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 74-84.
    12. Willie Doaemo & Sahil Dhiman & Alexander Borovskis & Wenlan Zhang & Sumedha Bhat & Srishti Jaipuria & Mirzi Betasolo, 2021. "Assessment of municipal solid waste management system in Lae City, Papua New Guinea in the context of sustainable development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18509-18539, December.
    13. Riccardo Boiocchi & Matia Mainardis & Elena Cristina Rada & Marco Ragazzi & Silvana Carla Salvati, 2023. "Carbon Footprint and Energy Recovery Potential of Primary Wastewater Treatment in Decentralized Areas: A Critical Review on Septic and Imhoff Tanks," Energies, MDPI, vol. 16(24), pages 1-23, December.
    14. Lv, Siqi & Zhang, Rui & He, Yuanping & Ma, Zichuan & Ma, Xiaolong, 2024. "Efficient reactive adsorption of hexamethyldisiloxane on MCM-41 supported sulfuric acid," Renewable Energy, Elsevier, vol. 224(C).
    15. Małgorzata Kajda-Szcześniak & Monika Czop, 2022. "Comparison of Pyrolysis and Combustion Processes of Vinyl Floor Panels Using Thermogravimetric Analysis (TG-FTIR) in Terms of the Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    16. Józef Ciuła & Violetta Kozik & Agnieszka Generowicz & Krzysztof Gaska & Andrzej Bak & Marlena Paździor & Krzysztof Barbusiński, 2020. "Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis," Energies, MDPI, vol. 13(23), pages 1-18, November.
    17. Anna Kochanek & Józef Ciuła & Agnieszka Generowicz & Olena Mitryasova & Aleksandra Jasińska & Sławomir Jurkowski & Paweł Kwaśnicki, 2024. "The Analysis of Geospatial Factors Necessary for the Planning, Design, and Construction of Agricultural Biogas Plants in the Context of Sustainable Development," Energies, MDPI, vol. 17(22), pages 1-23, November.
    18. Kazimierz Gaj & Urszula Miller & Izabela Sówka, 2020. "Progressing Climate Changes and Deteriorating Air Quality as One of the Biggest Challenges of Sustainable Development of the Present Decade in Poland," Sustainability, MDPI, vol. 12(16), pages 1-4, August.
    19. Nibras Abdullah & Ola A. Al-wesabi & Badiea Abdulkarem Mohammed & Zeyad Ghaleb Al-Mekhlafi & Meshari Alazmi & Mohammad Alsaffar & Mahmoud Baklizi & Putra Sumari, 2022. "IoT-Based Waste Management System in Formal and Informal Public Areas in Mecca," IJERPH, MDPI, vol. 19(20), pages 1-31, October.
    20. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhai, Zhiqiang (John), 2011. "Performance comparison of combined cooling heating and power system in different operation modes," Applied Energy, Elsevier, vol. 88(12), pages 4621-4631.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:13:p:5691-:d:1683629. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.