Author
Listed:
- Gökhan Özkan
(Industrial Engineering Department, Engineering Faculty, Kırıkkale University, Yahsihan Campus, Kırıkkale 71450, Türkiye)
- Burak Birgören
(Industrial Engineering Department, TOBB ETU University of Economics and Technology, Ankara 06510, Türkiye)
- Ümit Sami Sakallı
(Industrial Engineering Department, Engineering Faculty, Kırıkkale University, Yahsihan Campus, Kırıkkale 71450, Türkiye)
Abstract
The optimum choice of safety measures (SMs) within constraints is necessary for effective risk management in occupational health and safety (OHS). The stochastic nature of safety interventions is frequently overlooked by traditional approaches such as deterministic models and risk matrices. This study presents a novel stochastic knapsack model that maximizes the overall expected benefit during a risk assessment period considering budgetary constraints and the interdependencies between risks and safety measures. Two models are developed as follows: a one-to-one relationship model assuming independent risks and a multiple-relationship model accounting for interdependent safety measures. The suggested model’s real-world implementation is illustrated through a case study in the retail industry. The results demonstrate the model’s ability to efficiently prioritize SMs, showing an 18% reduction in objective function value and an average risk reduction of 29.5 per monetary unit invested, compared to 26.2 for the deterministic model. A more realistic and flexible framework for safety investment planning is offered by the analysis, which emphasizes the benefits of including stochastic components and interdependencies in decision-making. By addressing the significant drawbacks of deterministic models and providing a flexible, data-driven framework for safety optimization, this study adds to the body of literature. The suggested model is in line with the United Nations Sustainable Development Goals (SDGs), specifically SDGs 3, 8, 9, and 12. Its adaptability contributes to achieving SDG 13, emphasizing possible uses in risk management for climate change. This study shows how decision-making that is structured and aware of uncertainty can support safer, more sustainable industrial processes.
Suggested Citation
Gökhan Özkan & Burak Birgören & Ümit Sami Sakallı, 2025.
"A Stochastic Knapsack Model for Sustainable Safety Resource Allocation Under Interdependent Safety Measures,"
Sustainability, MDPI, vol. 17(12), pages 1-23, June.
Handle:
RePEc:gam:jsusta:v:17:y:2025:i:12:p:5242-:d:1673270
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:12:p:5242-:d:1673270. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.