IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v97y2012i1p36-46.html
   My bibliography  Save this article

A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider

Author

Listed:
  • Marhavilas, P.K.
  • Koulouriotis, D.E.

Abstract

An individual method cannot build either a realistic forecasting model or a risk assessment process in the worksites, and future perspectives should focus on the combined forecasting/estimation approach. The main purpose of this paper is to gain insight into a risk prediction and estimation methodological framework, using the combination of three different methods, including the proportional quantitative-risk-assessment technique (PRAT), the time-series stochastic process (TSP), and the method of estimating the societal-risk (SRE) by F–N curves. In order to prove the usefulness of the combined usage of stochastic and quantitative risk assessment methods, an application on an electric power provider industry is presented to, using empirical data.

Suggested Citation

  • Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
  • Handle: RePEc:eee:reensy:v:97:y:2012:i:1:p:36-46
    DOI: 10.1016/j.ress.2011.09.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.09.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohanta, Dusmanta Kumar & Sadhu, Pradip Kumar & Chakrabarti, R., 2007. "Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 187-199.
    2. Moura, Márcio das Chagas & Droguett, Enrique López, 2009. "Mathematical formulation and numerical treatment based on transition frequency densities and quadrature methods for non-homogeneous semi-Markov processes," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 342-349.
    3. Røed, Willy & Aven, Terje, 2009. "Bayesian approaches for detecting significant deterioration," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 604-610.
    4. Røed, Willy & Mosleh, Ali & Vinnem, Jan Erik & Aven, Terje, 2009. "On the use of the hybrid causal logic method in offshore risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 445-455.
    5. Pérez, C.J. & Martín, J. & Rufo, M.J., 2006. "Sensitivity estimations for Bayesian inference models solved by MCMC methods," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1310-1314.
    6. Dominguez-Garcia, Alejandro D. & Kassakian, John G. & Schindall, Joel E., 2006. "Reliability evaluation of the power supply of an electrical power net for safety-relevant applications," Reliability Engineering and System Safety, Elsevier, vol. 91(5), pages 505-514.
    7. Norrington, Lisa & Quigley, John & Russell, Ashley & Van der Meer, Robert, 2008. "Modelling the reliability of search and rescue operations with Bayesian Belief Networks," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 940-949.
    8. Wu, Wei-wei & Ning, Angelika & Ning, Xuan-xi, 2008. "Evaluation of the reliability of transport networks based on the stochastic flow of moving objects," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 838-844.
    9. Cho, Sungwhan & Jiang, Jin, 2008. "Analysis of surveillance test interval by Markov process for SDS1 in CANDU nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 1-13.
    10. Doguc, Ozge & Ramirez-Marquez, Jose Emmanuel, 2009. "A generic method for estimating system reliability using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 542-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
    2. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    3. Pouya Gholizadeh & Ikechukwu S. Onuchukwu & Behzad Esmaeili, 2021. "Trends in Catastrophic Occupational Incidents among Electrical Contractors, 2007–2013," IJERPH, MDPI, vol. 18(10), pages 1-24, May.
    4. Gavriil D. Chaitidis & Panagiotis K. Marhavilas & Venetis Kanakaris, 2022. "Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems," Sustainability, MDPI, vol. 14(13), pages 1-23, June.
    5. Fotis Kitsios & Elpiniki Chatzidimitriou & Maria Kamariotou, 2023. "The ISO/IEC 27001 Information Security Management Standard: How to Extract Value from Data in the IT Sector," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    6. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Y-F Wang & M Xie & M S Habibullah & K-M Ng, 2011. "Quantitative risk assessment through hybrid causal logic approach," Journal of Risk and Reliability, , vol. 225(3), pages 323-332, September.
    2. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    3. Tina Song, Wheyming & Lin, Peisyuan, 2018. "System reliability of stochastic networks with multiple reworks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 258-268.
    4. Rufo, M.J. & Pérez, C.J. & Martín, J., 2009. "Local parametric sensitivity for mixture models of lifetime distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1238-1244.
    5. Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
    6. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    7. Vlad Stefan Barbu & Guglielmo D’Amico & Thomas Gkelsinis, 2021. "Sequential Interval Reliability for Discrete-Time Homogeneous Semi-Markov Repairable Systems," Mathematics, MDPI, vol. 9(16), pages 1-18, August.
    8. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    9. Zhang, Cai Wen & Zhang, Tieling & Chen, Nan & Jin, Tongdan, 2013. "Reliability modeling and analysis for a novel design of modular converter system of wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 86-94.
    10. Froger, Aurélien & Gendreau, Michel & Mendoza, Jorge E. & Pinson, Éric & Rousseau, Louis-Martin, 2016. "Maintenance scheduling in the electricity industry: A literature review," European Journal of Operational Research, Elsevier, vol. 251(3), pages 695-706.
    11. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.
    12. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    13. Luo, Jianing & Li, Hangxin & Wang, Shengwei, 2022. "A quantitative reliability assessment and risk quantification method for microgrids considering supply and demand uncertainties," Applied Energy, Elsevier, vol. 328(C).
    14. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.
    15. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    16. Moura, Márcio das Chagas & Zio, Enrico & Lins, Isis Didier & Droguett, Enrique, 2011. "Failure and reliability prediction by support vector machines regression of time series data," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1527-1534.
    17. Burciu, Zbigniew & Grabski, Franciszek, 2011. "The experimental and theoretical study of life raft safety under strong wind," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1456-1461.
    18. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    19. Bandeira, Michelle Carvalho Galvão Silva Pinto & Correia, Anderson Ribeiro & Martins, Marcelo Ramos, 2018. "General model analysis of aeronautical accidents involving human and organizational factors," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 137-146.
    20. D׳Amico, Guglielmo & Petroni, Filippo & Prattico, Flavio, 2015. "Reliability measures for indexed semi-Markov chains applied to wind energy production," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 170-177.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:97:y:2012:i:1:p:36-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.