IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i10p5126-d553030.html
   My bibliography  Save this article

Trends in Catastrophic Occupational Incidents among Electrical Contractors, 2007–2013

Author

Listed:
  • Pouya Gholizadeh

    (Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA)

  • Ikechukwu S. Onuchukwu

    (Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA)

  • Behzad Esmaeili

    (Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering, Volgenau School of Engineering, George Mason University, Fairfax, VA 22030, USA)

Abstract

This study used methodologies of descriptive and quantitative statistics to identify the contributing factors most affecting occupational accident outcomes among electrical contracting enterprises, given an accident occurred. Accident reports were collected from the Occupational Safety and Health Administration’s fatality and catastrophe database. To ensure the reliability of the data, the team manually codified more than 600 incidents through a comprehensive content analysis using injury-classification standards. Inclusive of both fatal and non-fatal injuries, the results showed that most accidents happened in nonresidential buildings , new construction , and small projects (i.e., $50,000 or less). The main source of injuries manifested in parts and materials (46%), followed by tools, instruments, and equipment (19%), and structure and surfaces (16%). The most frequent types of injuries were fractures (31%), electrocutions (27%), and electrical burns (14%); the main injured body parts were upper extremities (25%), head (23%), and body system (18%). Among non-fatal cases, falls (37%), exposure to electricity (36%), and contact with objects (19%) caused most injuries; among fatal cases, exposure to electricity was the leading cause of death (50%), followed by falls (28%) and contact with objects (19%). The analysis also investigated the impact of several accident factors on the degree of injuries and found significant effects from such factors such as project type , source of injury , cause of injury , injured part of body , nature of injury , and event type . In other words, the statistical probability of a fatal accident—given an accident occurrence—changes significantly based on the degree of these factors. The results of this study, as depicted in the proposed decision tree model, revealed that the most important factor for predicting the nature of injury (electrical or non-electrical) is: whether the source of injury is parts and materials ; followed by whether the source of injury is tools, instruments, and equipment . In other words, in predicting (with a 94.31% accuracy) the nature of injury as electrical or non-electrical, whether the source of injury is parts and materials and whether the source of injury is tools, instruments, and equipment are very important. Seven decision rules were derived from the proposed decision tree model. Beyond these outcomes, the described methodology contributes to the accident-analysis body of knowledge by providing a framework for codifying data from accident reports to facilitate future analysis and modeling attempts to subsequently mitigate more injuries in other fields.

Suggested Citation

  • Pouya Gholizadeh & Ikechukwu S. Onuchukwu & Behzad Esmaeili, 2021. "Trends in Catastrophic Occupational Incidents among Electrical Contractors, 2007–2013," IJERPH, MDPI, vol. 18(10), pages 1-24, May.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5126-:d:553030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/10/5126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/10/5126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marhavilas, P.K. & Koulouriotis, D.E., 2012. "A combined usage of stochastic and quantitative risk assessment methods in the worksites: Application on an electric power provider," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 36-46.
    2. Qingwei Xu & Kaili Xu, 2021. "Analysis of the Characteristics of Fatal Accidents in the Construction Industry in China Based on Statistical Data," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    3. Rivas, T. & Paz, M. & Martín, J.E. & Matías, J.M. & García, J.F. & Taboada, J., 2011. "Explaining and predicting workplace accidents using data-mining techniques," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 739-747.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aneziris, O.N. & Topali, E. & Papazoglou, I.A., 2012. "Occupational risk of building construction," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 36-46.
    2. Lluís Sanmiquel & Marc Bascompta & Josep M. Rossell & Hernán Francisco Anticoi & Eduard Guash, 2018. "Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques," IJERPH, MDPI, vol. 15(3), pages 1-11, March.
    3. Lluís Sanmiquel-Pera & Marc Bascompta & Hernán Francisco Anticoi, 2019. "Analysis of a Historical Accident in a Spanish Coal Mine," IJERPH, MDPI, vol. 16(19), pages 1-11, September.
    4. Panagiotis K. Marhavilas & Michael G. Tegas & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A Joint Stochastic/Deterministic Process with Multi-Objective Decision Making Risk-Assessment Framework for Sustainable Constructions Engineering Projects—A Case Study," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    5. Panagiotis K. Marhavilas & Michail Filippidis & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2020. "A HAZOP with MCDM Based Risk-Assessment Approach: Focusing on the Deviations with Economic/Health/Environmental Impacts in a Process Industry," Sustainability, MDPI, vol. 12(3), pages 1-29, January.
    6. Gondia, Ahmed & Moussa, Ahmed & Ezzeldin, Mohamed & El-Dakhakhni, Wael, 2023. "Machine learning-based construction site dynamic risk models," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    7. Gerassis, S. & Albuquerque, M.T.D. & García, J.F. & Boente, C. & Giráldez, E. & Taboada, J. & Martín, J.E., 2019. "Understanding complex blasting operations: A structural equation model combining Bayesian networks and latent class clustering," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 195-204.
    8. Mei Liu & Boning Li & Hongjun Cui & Pin-Chao Liao & Yuecheng Huang, 2022. "Research Paradigm of Network Approaches in Construction Safety and Occupational Health," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    9. Chih-Hsiung Chang & Mei-Ling Chuang & Jia-Cheng Tan & Chuen-Chyi Hsieh & Chien-Cheng Chou, 2022. "Indoor Safety Monitoring for Falls or Restricted Areas Using Wi-Fi Channel State Information and Deep Learning Methods in Mega Building Construction Projects," Sustainability, MDPI, vol. 14(22), pages 1-20, November.
    10. Gavriil D. Chaitidis & Panagiotis K. Marhavilas & Venetis Kanakaris, 2022. "Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems," Sustainability, MDPI, vol. 14(13), pages 1-23, June.
    11. Marhavilas, P.K. & Koulouriotis, D.E. & Spartalis, S.H., 2013. "Harmonic analysis of occupational-accident time-series as a part of the quantified risk evaluation in worksites: Application on electric power industry and construction sector," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 8-25.
    12. Mohamed Zul Fadhli Khairuddin & Puat Lu Hui & Khairunnisa Hasikin & Nasrul Anuar Abd Razak & Khin Wee Lai & Ahmad Shakir Mohd Saudi & Siti Salwa Ibrahim, 2022. "Occupational Injury Risk Mitigation: Machine Learning Approach and Feature Optimization for Smart Workplace Surveillance," IJERPH, MDPI, vol. 19(21), pages 1-19, October.
    13. Anurag Yedla & Fatemeh Davoudi Kakhki & Ali Jannesari, 2020. "Predictive Modeling for Occupational Safety Outcomes and Days Away from Work Analysis in Mining Operations," IJERPH, MDPI, vol. 17(19), pages 1-17, September.
    14. Fotis Kitsios & Elpiniki Chatzidimitriou & Maria Kamariotou, 2023. "The ISO/IEC 27001 Information Security Management Standard: How to Extract Value from Data in the IT Sector," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    15. Silva, Joaquim F. & Jacinto, Celeste, 2012. "Finding occupational accident patterns in the extractive industry using a systematic data mining approach," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 108-122.
    16. Rameez Rameezdeen & Abbas Elmualim, 2017. "The Impact of Heat Waves on Occurrence and Severity of Construction Accidents," IJERPH, MDPI, vol. 14(1), pages 1-13, January.
    17. Sung-Yong Kang & Seongi Min & Deokhee Won & Young-Jong Kang & Seungjun Kim, 2021. "Suggestion of an Improved Evaluation Method of Construction Companies’ Industrial Accident Prevention Activities in South Korea," IJERPH, MDPI, vol. 18(16), pages 1-25, August.
    18. Jocelyn, Sabrina & Chinniah, Yuvin & Ouali, Mohamed-Salah & Yacout, Soumaya, 2017. "Application of logical analysis of data to machinery-related accident prevention based on scarce data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 223-236.
    19. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:10:p:5126-:d:553030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.