IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i10p4498-d1656416.html
   My bibliography  Save this article

Design and Layout Planning of a Green Hydrogen Production Facility

Author

Listed:
  • Caroline Rodrigues Vaz

    (Department of Industrial and Systems Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil)

  • Eduardo Battisti Leite

    (Department of Industrial and Systems Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil)

  • Mauricio Uriona Maldonado

    (Department of Industrial and Systems Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil)

  • Milton M. Herrera

    (Centre for Research in Economic Sciences, Universidad Militar Nueva Granada, Bogotá 110111, Cundinamarca, Colombia)

  • Sebastian Zapata

    (Escuela de Ingeniería y Ciencias Básicas, Universidad EIA, Envigado 055420, Antioquia, Colombia)

Abstract

In response to the greenhouse gas (GHG) reduction targets set by the Paris Agreement, green hydrogen has become a key solution for global decarbonisation. However, research on the design of green hydrogen production facilities remains limited, particularly in Brazil. This study bridges this gap by developing a comprehensive design for a green hydrogen production plant powered by an 81 MW photovoltaic (PV) system in Ceará, Brazil. The facility layout, equipment sizing, and resource requirements were determined using the Systematic Layout Planning (SLP) method, based on the available energy for daily hydrogen production. The design also integrates safety regulations, including local standards in Ceará, as well as raw material needs and production capacity. This study delivers a detailed facility layout, specifying equipment placement and capacity based on the PV plant’s output while ensuring compliance with safety protocols. This research contributes to the green hydrogen literature by providing a structured methodology for facility design, serving as a reference for future projects, and fostering the advancement of green hydrogen technology, particularly in developing countries.

Suggested Citation

  • Caroline Rodrigues Vaz & Eduardo Battisti Leite & Mauricio Uriona Maldonado & Milton M. Herrera & Sebastian Zapata, 2025. "Design and Layout Planning of a Green Hydrogen Production Facility," Sustainability, MDPI, vol. 17(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4498-:d:1656416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/10/4498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/10/4498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. He, Hongjing & Huang, Yongyi & Nakadomari, Akito & Masrur, Hasan & Krishnan, Narayanan & Hemeida, Ashraf M. & Mikhaylov, Alexey & Senjyu, Tomonobu, 2023. "Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands," Renewable Energy, Elsevier, vol. 202(C), pages 1436-1447.
    2. Ahang, Mohammadreza & Granado, Pedro Crespo del & Tomasgard, Asgeir, 2025. "Investments in green hydrogen as a flexibility source for the European power system by 2050: Does it pay off?," Applied Energy, Elsevier, vol. 378(PA).
    3. Zhang, Shuo & Geng, Zihan & Li, Yingzi & Li, Xinxin & Chen, Li, 2024. "A novel two-stage optimal layout model of hydrogen refueling facility network based on green electricity hydrogen production: Beijing-Tianjin-Hebei region of China as case study," Renewable Energy, Elsevier, vol. 237(PB).
    4. Akashi, Osamu & Hijioka, Yasuaki & Masui, Toshihiko & Hanaoka, Tatsuya & Kainuma, Mikiko, 2012. "GHG emission scenarios in Asia and the world: The key technologies for significant reduction," Energy Economics, Elsevier, vol. 34(S3), pages 346-358.
    5. Hosseini Dehshiri, Seyyed Shahabaddin & Firoozabadi, Bahar, 2025. "Hydrogen penetration in textile industry: A hybrid renewable energy system, evolution programming and feasibility analysis," Energy, Elsevier, vol. 318(C).
    6. Julian David Hunt & Andreas Nascimento & Oldrich Joel Romero & Behnam Zakeri & Jakub Jurasz & Paweł B. Dąbek & Tomasz Strzyżewski & Bojan Đurin & Walter Leal Filho & Marcos Aurélio Vasconcelos Freitas, 2024. "Hydrogen storage with gravel and pipes in lakes and reservoirs," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Bosello & Carlo Orecchia & David A. Raitzer, 2016. "Decarbonization Pathways in Southeast Asia: New Results for Indonesia, Malaysia, Philippines, Thailand and Viet Nam," Working Papers 2016.75, Fondazione Eni Enrico Mattei.
    2. Runsen Zhang & Tatsuya Hanaoka, 2022. "Cross-cutting scenarios and strategies for designing decarbonization pathways in the transport sector toward carbon neutrality," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    4. Fujimori, Shinichiro & Masui, Toshihiko & Matsuoka, Yuzuru, 2015. "Gains from emission trading under multiple stabilization targets and technological constraints," Energy Economics, Elsevier, vol. 48(C), pages 306-315.
    5. Adeel ur Rehman & Bhajan Lal, 2022. "RETRACTED: Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    6. David Franzmann & Thora Schubert & Heidi Heinrichs & Peter A. Kukla & Detlef Stolten, 2025. "Energy Storage Autonomy in Renewable Energy Systems Through Hydrogen Salt Caverns," Papers 2504.12135, arXiv.org, revised Apr 2025.
    7. Okagawa, Azusa & Masui, Toshihiko & Akashi, Osamu & Hijioka, Yasuaki & Matsumoto, Kenichi & Kainuma, Mikiko, 2012. "Assessment of GHG emission reduction pathways in a society without carbon capture and nuclear technologies," Energy Economics, Elsevier, vol. 34(S3), pages 391-398.
    8. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    9. Calvin, Katherine & Clarke, Leon & Krey, Volker & Blanford, Geoffrey & Jiang, Kejun & Kainuma, Mikiko & Kriegler, Elmar & Luderer, Gunnar & Shukla, P.R., 2012. "The role of Asia in mitigating climate change: Results from the Asia modeling exercise," Energy Economics, Elsevier, vol. 34(S3), pages 251-260.
    10. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    11. Tsai, Miao-Shan & Chang, Ssu-Li, 2015. "Taiwan’s 2050 low carbon development roadmap: An evaluation with the MARKAL model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 178-191.
    12. Zhang, Runsen & Fujimori, Shinichiro & Dai, Hancheng & Hanaoka, Tatsuya, 2018. "Contribution of the transport sector to climate change mitigation: Insights from a global passenger transport model coupled with a computable general equilibrium model," Applied Energy, Elsevier, vol. 211(C), pages 76-88.
    13. Huang, Yongyi & Ahmed, Shoaib & Ueda, Soichiro & Liang, Xunyu & Howlader, Harun Or Rashid & Lotfy, Mohammed Elsayed & Senjyu, Tomonobu, 2025. "Operation optimization of Combined Heat and Power microgrid in buildings consider renewable energy, electric vehicles and hydrogen fuel," Energy, Elsevier, vol. 319(C).
    14. Małgorzata Sztorc, 2025. "The Behavior of European Union Companies in Terms of Increasing Energy Efficiency from the Perspective of Achieving Climate Neutrality," Energies, MDPI, vol. 18(3), pages 1-40, January.
    15. Shuanghui Bao & Osamu Nishiura & Shinichiro Fujimori & Ken Oshiro & Runsen Zhang, 2020. "Identification of Key Factors to Reduce Transport-Related Air Pollutants and CO 2 Emissions in Asia," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    16. Zhang, Runsen & Zhang, Junyi, 2021. "Long-term pathways to deep decarbonization of the transport sector in the post-COVID world," Transport Policy, Elsevier, vol. 110(C), pages 28-36.
    17. Hashemizadeh, Ali & Ju, Yanbing & Abadi, Faezeh Zareian Baghdad, 2024. "Policy design for renewable energy development based on government support: A system dynamics model," Applied Energy, Elsevier, vol. 376(PB).
    18. Bosello, Francesco & Marangoni, Giacomo & Orecchia, Carlo & Raitzer, David A. & Tavoni, Massimo, 2016. "The Cost of Climate Stabilization in Southeast Asia, a Joint Assessment with Dynamic Optimization and CGE Models," MITP: Mitigation, Innovation and Transformation Pathways 251810, Fondazione Eni Enrico Mattei (FEEM).
    19. Ueckerdt, Falko & Pietzcker, Robert & Scholz, Yvonne & Stetter, Daniel & Giannousakis, Anastasis & Luderer, Gunnar, 2017. "Decarbonizing global power supply under region-specific consideration of challenges and options of integrating variable renewables in the REMIND model," Energy Economics, Elsevier, vol. 64(C), pages 665-684.
    20. Squadrito, Gaetano & Maggio, Gaetano & Nicita, Agatino, 2023. "The green hydrogen revolution," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:10:p:4498-:d:1656416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.