IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225003329.html
   My bibliography  Save this article

Operation optimization of Combined Heat and Power microgrid in buildings consider renewable energy, electric vehicles and hydrogen fuel

Author

Listed:
  • Huang, Yongyi
  • Ahmed, Shoaib
  • Ueda, Soichiro
  • Liang, Xunyu
  • Howlader, Harun Or Rashid
  • Lotfy, Mohammed Elsayed
  • Senjyu, Tomonobu

Abstract

This paper introduces a forward-thinking framework that integrates renewable energy, Electric Vehicles (EVs), and hydrogen within Combined Heat and Power (CHP) microgrids (MGs) for effective building energy management. By utilizing Particle Swarm Optimization (PSO) to find the optimal solution and incorporating Chance-Constrained Programming (CCP) to handle uncertainties in renewable energy generation and EV loads, this framework addresses the complexities of modern energy systems. The study employs Monte Carlo (MC) to simulate the EV load profile, applies K-means clustering to categorize load and renewable generation patterns, and uses a Sigmoid function-based model for Real-Time Pricing (RTP). The combination of PSO and CCP is used to optimize the system’s operating strategy. This evaluates the system’s economic benefits and impact on carbon emissions by analyzing different scenarios, such as weekdays versus weekends and various weather conditions (sunny, cloudy, rainy). The results show that due to the high price of hydrogen, it is currently costly to replace hydrogen completely. However, this integrated approach not only improves energy efficiency and reduces carbon footprint but also ensures system reliability under uncertain conditions, contributing to broader environmental sustainability.

Suggested Citation

  • Huang, Yongyi & Ahmed, Shoaib & Ueda, Soichiro & Liang, Xunyu & Howlader, Harun Or Rashid & Lotfy, Mohammed Elsayed & Senjyu, Tomonobu, 2025. "Operation optimization of Combined Heat and Power microgrid in buildings consider renewable energy, electric vehicles and hydrogen fuel," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225003329
    DOI: 10.1016/j.energy.2025.134690
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003329
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134690?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Rujing & Wang, Jiangjiang & Huo, Shuojie & Zhang, Jing & Tang, Saiqiu & Yang, Mei, 2023. "Comparative study for four technologies on flexibility improvement and renewable energy accommodation of combined heat and power system," Energy, Elsevier, vol. 263(PE).
    2. Omar Hazem Mohammed & Mohammed Kharrich, 2021. "An Overview of the Performance of PSO Algorithm in Renewable Energy Systems," International Series in Operations Research & Management Science, in: Burcu Adıgüzel Mercangöz (ed.), Applying Particle Swarm Optimization, edition 1, chapter 0, pages 307-320, Springer.
    3. Yongyi Huang & Hasan Masrur & Ryuto Shigenobu & Ashraf Mohamed Hemeida & Alexey Mikhaylov & Tomonobu Senjyu, 2021. "A Comparative Design of a Campus Microgrid Considering a Multi-Scenario and Multi-Objective Approach," Energies, MDPI, vol. 14(11), pages 1-20, May.
    4. He, Hongjing & Huang, Yongyi & Nakadomari, Akito & Masrur, Hasan & Krishnan, Narayanan & Hemeida, Ashraf M. & Mikhaylov, Alexey & Senjyu, Tomonobu, 2023. "Potential and economic viability of green hydrogen production from seawater electrolysis using renewable energy in remote Japanese islands," Renewable Energy, Elsevier, vol. 202(C), pages 1436-1447.
    5. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    6. Yongyi Huang & Atsushi Yona & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Paras Mandal & Alexey Mikhaylov & Tomonobu Senjyu & Mohammed Elsayed Lotfy, 2021. "Energy Management System Optimization of Drug Store Electric Vehicles Charging Station Operation," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenpu & Xu, Jing & Ma, Suxia & Zhao, Guanjia & Wang, Jianfei & Gu, Yujiong, 2025. "Comparative investigation on heat pump solutions for peak shaving and heat-power decoupling in combined heat and power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    2. Xiaofeng Liu & Shijun Wang & Jiawen Sun, 2018. "Energy Management for Community Energy Network with CHP Based on Cooperative Game," Energies, MDPI, vol. 11(5), pages 1-18, April.
    3. Alessandro Di Giorgio & Emanuele De Santis & Lucia Frettoni & Stefano Felli & Francesco Liberati, 2023. "Electric Vehicle Fast Charging: A Congestion-Dependent Stochastic Model Predictive Control under Uncertain Reference," Energies, MDPI, vol. 16(3), pages 1-16, January.
    4. Sayegh, Hasan & Leconte, Antoine & Fraisse, Gilles & Wurtz, Etienne & Rouchier, Simon, 2022. "Computational time reduction using detailed building models with Typical Short Sequences," Energy, Elsevier, vol. 244(PB).
    5. Dong, Haoxin & Shan, Zijing & Zhou, Jianli & Xu, Chuanbo & Chen, Wenjun, 2023. "Refined modeling and co-optimization of electric-hydrogen-thermal-gas integrated energy system with hybrid energy storage," Applied Energy, Elsevier, vol. 351(C).
    6. Ashkan Safari & Arman Oshnoei, 2025. "An Overview of Recent AI Applications in Combined Heat and Power Systems," Energies, MDPI, vol. 18(11), pages 1-31, May.
    7. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    8. Ao, Xuan & Zhang, Jing & Yan, Rujing & He, Yu & Long, Chuanyu & Geng, Xianxian & Zhang, Yan & Fan, Junqiu & Liu, Tianhao, 2025. "More flexibility and waste heat recovery of a combined heat and power system for renewable consumption and higher efficiency," Energy, Elsevier, vol. 315(C).
    9. Qin, Chun & Zhao, Jun & Chen, Long & Liu, Ying & Wang, Wei, 2022. "An adaptive piecewise linearized weighted directed graph for the modeling and operational optimization of integrated energy systems," Energy, Elsevier, vol. 244(PA).
    10. Pecenak, Zachary K. & Stadler, Michael & Mathiesen, Patrick & Fahy, Kelsey & Kleissl, Jan, 2020. "Robust design of microgrids using a hybrid minimum investment optimization," Applied Energy, Elsevier, vol. 276(C).
    11. Zhao Luo & Wei Gu & Yong Sun & Xiang Yin & Yiyuan Tang & Xiaodong Yuan, 2016. "Performance Analysis of the Combined Operation of Interconnected-BCCHP Microgrids in China," Sustainability, MDPI, vol. 8(10), pages 1-20, September.
    12. Fuyi Zou & Hui He & Xiang Liao & Ke Liu & Shuo Ouyang & Li Mo & Wei Huang, 2025. "Consider Demand Response and Power-Sharing Source-Storage-Load Three-Level Game Models," Sustainability, MDPI, vol. 17(10), pages 1-25, May.
    13. Bohlayer, Markus & Zöttl, Gregor, 2018. "Low-grade waste heat integration in distributed energy generation systems - An economic optimization approach," Energy, Elsevier, vol. 159(C), pages 327-343.
    14. Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
    15. Arabzadeh, Vahid & Frank, Raphaël, 2024. "Creating a renewable energy-powered energy system: Extreme scenarios and novel solutions for large-scale renewable power integration," Applied Energy, Elsevier, vol. 374(C).
    16. Eduardo Marlés-Sáenz & Eduardo Gómez-Luna & Josep M. Guerrero & Juan C. Vasquez, 2025. "Innovative Bibliometric Methodology: A New Big Data-Based Framework for Scientific Research," Energies, MDPI, vol. 18(10), pages 1-34, May.
    17. Hou, Guolian & Huang, Ting & Zheng, Fumeng & Huang, Congzhi, 2024. "A hierarchical reinforcement learning GPC for flexible operation of ultra-supercritical unit considering economy," Energy, Elsevier, vol. 289(C).
    18. Chen, Chengxu & Du, Xiaoze & Yang, Lizhong & Romagnoli, Alessandro, 2024. "Flexibility enhancement of combined heat and power unit integrated with source and grid-side thermal energy storage," Energy, Elsevier, vol. 312(C).
    19. Heendeniya, Charitha Buddhika & Sumper, Andreas & Eicker, Ursula, 2020. "The multi-energy system co-planning of nearly zero-energy districts – Status-quo and future research potential," Applied Energy, Elsevier, vol. 267(C).
    20. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & Bonomolo, Marina, 2019. "Assessment of tools for urban energy planning," Energy, Elsevier, vol. 176(C), pages 544-551.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225003329. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.