IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2853-d559125.html
   My bibliography  Save this article

A Comparative Design of a Campus Microgrid Considering a Multi-Scenario and Multi-Objective Approach

Author

Listed:
  • Yongyi Huang

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Hasan Masrur

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

  • Ryuto Shigenobu

    (Department of Electrical and Electronics Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan)

  • Ashraf Mohamed Hemeida

    (Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt)

  • Alexey Mikhaylov

    (Financial University under the Government of the Russian Federation, 124167 Moscow, Russia)

  • Tomonobu Senjyu

    (Department of Electrical and Electronics Engineering, University of the Ryukyus, Okinawa 903-0213, Japan)

Abstract

This article proposes a plan to replace real-time power with constant power from the grid to reduce costs and reduce the impact of the micro-grid on the main grid at the same time. Most of the peak electricity consumption periods of universities or some enterprise institutions are during the daytime. If solar energy can be used reasonably at this time, it can provide a good guarantee of peak power. In this study, a grid-linked solar-plus-storage micro-grid was used to supply power to a university located in Okinawa, Japan. The non-dominated sorting genetic algorithm II (NSGA-II) was used to optimize the model size, and the loss of power supply probability (LPSP), life cycle cost (LCC), and waste of energy (WE) were taken as the optimization indicators. For this study, three scenarios were considered where the first scheme (Case 1) was a comparison scheme, which used a PV battery and real-time power from the infinity bus. Both the second and third cases used constant power. While Case 2 used constant power throughout the year, Case 3 used daily constant power. The optimal solutions for the power supply units were grouped into three cases where Case 1 was found to be the most expensive one. It was found that the costs of Cases 2 and 3 were 62.8% and 63.3% less than Case 1. As a result, the waste of energy was found to be more significant than Case 1: 70 times and 60 times, respectively. On the contrary, Case 1 had 15.2% and 16.7% less carbon emissions than Case 2 and Case 3, respectively. This article put forward the idea of constant power supply growth at the financial markets, which breaks the traditional way in which the power supply side follows the user’s consumption. While reducing costs, it reduces the impact on large-scale power grids and can also ensure the reliability of campus microgrids.

Suggested Citation

  • Yongyi Huang & Hasan Masrur & Ryuto Shigenobu & Ashraf Mohamed Hemeida & Alexey Mikhaylov & Tomonobu Senjyu, 2021. "A Comparative Design of a Campus Microgrid Considering a Multi-Scenario and Multi-Objective Approach," Energies, MDPI, vol. 14(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2853-:d:559125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2853/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2853/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasan Masrur & Harun Or Rashid Howlader & Mohammed Elsayed Lotfy & Kaisar R. Khan & Josep M. Guerrero & Tomonobu Senjyu, 2020. "Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh," Sustainability, MDPI, vol. 12(7), pages 1-27, April.
    2. Hosenuzzaman, M. & Rahim, N.A. & Selvaraj, J. & Hasanuzzaman, M. & Malek, A.B.M.A. & Nahar, A., 2015. "Global prospects, progress, policies, and environmental impact of solar photovoltaic power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 284-297.
    3. Huang, Zhijia & Lu, Yuehong & Wei, Mengmeng & Liu, Jingjing, 2017. "Performance analysis of optimal designed hybrid energy systems for grid-connected nearly/net zero energy buildings," Energy, Elsevier, vol. 141(C), pages 1795-1809.
    4. Yuta Susowake & Hasan Masrur & Tetsuya Yabiku & Tomonobu Senjyu & Abdul Motin Howlader & Mamdouh Abdel-Akher & Ashraf M. Hemeida, 2019. "A Multi-Objective Optimization Approach towards a Proposed Smart Apartment with Demand-Response in Japan," Energies, MDPI, vol. 13(1), pages 1-14, December.
    5. Mahmoud M. Gamil & Makoto Sugimura & Akito Nakadomari & Tomonobu Senjyu & Harun Or Rashid Howlader & Hiroshi Takahashi & Ashraf M. Hemeida, 2020. "Optimal Sizing of a Real Remote Japanese Microgrid with Sea Water Electrolysis Plant Under Time-Based Demand Response Programs," Energies, MDPI, vol. 13(14), pages 1-22, July.
    6. Mehrjerdi, Hasan & Bornapour, Mosayeb & Hemmati, Reza & Ghiasi, Seyyed Mohammad Sadegh, 2019. "Unified energy management and load control in building equipped with wind-solar-battery incorporating electric and hydrogen vehicles under both connected to the grid and islanding modes," Energy, Elsevier, vol. 168(C), pages 919-930.
    7. Barbour, Edward & Parra, David & Awwad, Zeyad & González, Marta C., 2018. "Community energy storage: A smart choice for the smart grid?," Applied Energy, Elsevier, vol. 212(C), pages 489-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    2. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    3. Ailton Gonçalves & Gustavo O. Cavalcanti & Marcílio A. F. Feitosa & Roberto F. Dias Filho & Alex C. Pereira & Eduardo B. Jatobá & José Bione de Melo Filho & Manoel H. N. Marinho & Attilio Converti & L, 2023. "Optimal Sizing of a Photovoltaic/Battery Energy Storage System to Supply Electric Substation Auxiliary Systems under Contingency," Energies, MDPI, vol. 16(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adedayo Owosuhi & Yskandar Hamam & Josiah Munda, 2023. "Maximizing the Integration of a Battery Energy Storage System–Photovoltaic Distributed Generation for Power System Harmonic Reduction: An Overview," Energies, MDPI, vol. 16(6), pages 1-22, March.
    2. Mahmoud G. Hemeida & Salem Alkhalaf & Al-Attar A. Mohamed & Abdalla Ahmed Ibrahim & Tomonobu Senjyu, 2020. "Distributed Generators Optimization Based on Multi-Objective Functions Using Manta Rays Foraging Optimization Algorithm (MRFO)," Energies, MDPI, vol. 13(15), pages 1-37, July.
    3. Norbu, Sonam & Couraud, Benoit & Robu, Valentin & Andoni, Merlinda & Flynn, David, 2021. "Modelling the redistribution of benefits from joint investments in community energy projects," Applied Energy, Elsevier, vol. 287(C).
    4. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    5. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    6. Reinhold Lehneis & Daniela Thrän, 2024. "In 50 Shades of Orange: Germany’s Photovoltaic Power Generation Landscape," Energies, MDPI, vol. 17(16), pages 1-12, August.
    7. Fethi Khlifi & Habib Cherif & Jamel Belhadj, 2021. "Environmental and Economic Optimization and Sizing of a Micro-Grid with Battery Storage for an Industrial Application," Energies, MDPI, vol. 14(18), pages 1-17, September.
    8. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    9. William J. Howell & Ziqian Dong & Roberto Rojas-Cessa, 2024. "EOS: Impact Evaluation of Electric Vehicle Adoption on Peak Load Shaving Using Agent-Based Modeling," Energies, MDPI, vol. 17(20), pages 1-14, October.
    10. Yang, Jie & Yu, Fan & Ma, Kai & Yang, Bo & Yue, Zhiyuan, 2024. "Optimal scheduling of electric-hydrogen integrated charging station for new energy vehicles," Renewable Energy, Elsevier, vol. 224(C).
    11. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    12. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    13. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    14. Luca Brunelli & Emiliano Borri & Anna Laura Pisello & Andrea Nicolini & Carles Mateu & Luisa F. Cabeza, 2024. "Thermal Energy Storage in Energy Communities: A Perspective Overview through a Bibliometric Analysis," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
    15. Lisa B. Bosman & Walter D. Leon-Salas & William Hutzel & Esteban A. Soto, 2020. "PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities," Energies, MDPI, vol. 13(6), pages 1-16, March.
    16. Moh’d Al-Nimr & Abdallah Milhem & Basel Al-Bishawi & Khaleel Al Khasawneh, 2020. "Integrating Transparent and Conventional Solar Cells TSC/SC," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    17. Wang, Xuan & Mi, Zhenhao & Li, Kang & Huang, Xiaodong & Bao, Wenjie & Song, Jinsong & Wang, Chengkai & Chen, Guoqing & Cao, Peng, 2024. "Design and transient analysis of renewable energy-based residential net-zero energy buildings with energy storage," Renewable Energy, Elsevier, vol. 220(C).
    18. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M., 2021. "An energy paradigm transition framework from negative towards positive district energy sharing networks—Battery cycling aging, advanced battery management strategies, flexible vehicles-to-buildings in," Applied Energy, Elsevier, vol. 288(C).
    19. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    20. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2853-:d:559125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.