IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7213-d670555.html
   My bibliography  Save this article

Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty

Author

Listed:
  • Keivan Rahimi-Adli

    (INEOS Manufacturing Deutschland GmbH, Alte Strasse 201, 50769 Köln, Germany)

  • Egidio Leo

    (Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 70, 44221 Dortmund, Germany)

  • Benedikt Beisheim

    (Bayer AG, Engineering and Technology, 51368 Leverkusen, Germany)

  • Sebastian Engell

    (Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Emil-Figge-Str. 70, 44221 Dortmund, Germany)

Abstract

The operation of on-site power plants in the chemical industry is typically determined by the steam demand of the production plants. This demand is uncertain due to deviations from the production plan and fluctuations in the operation of the plants. The steam demand uncertainty can result in an inefficient operation of the power plant due to a surplus or deficiency of steam that is needed to balance the steam network. In this contribution, it is proposed to use two-stage stochastic programming on a moving horizon to cope with the uncertainty. In each iteration of the moving horizon scheme, the model parameters are updated according to the new information acquired from the plants and the optimisation is re-executed. Hedging against steam demand uncertainty results in a reduction of the fuel consumption and a more economic generation of electric power, which can result in significant savings in the operating cost of the power plant. Moreover, unplanned load reductions due to lack of steam can be avoided. The application of the new approach is demonstrated for the on-site power plant of INEOS in Köln, and significant savings are reported in exemplary simulations.

Suggested Citation

  • Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7213-:d:670555
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kelly, Scott & Pollitt, Michael, 2010. "An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom," Energy Policy, Elsevier, vol. 38(11), pages 6936-6945, November.
    2. Sabuncuoglu, I. & Bayiz, M., 2000. "Analysis of reactive scheduling problems in a job shop environment," European Journal of Operational Research, Elsevier, vol. 126(3), pages 567-586, November.
    3. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    4. Kia, Mohsen & Nazar, Mehrdad Setayesh & Sepasian, Mohammad Sadegh & Heidari, Alireza & Siano, Pierluigi, 2017. "Optimal day ahead scheduling of combined heat and power units with electrical and thermal storage considering security constraint of power system," Energy, Elsevier, vol. 120(C), pages 241-252.
    5. Jimenez-Navarro, Juan-Pablo & Kavvadias, Konstantinos & Filippidou, Faidra & Pavičević, Matija & Quoilin, Sylvain, 2020. "Coupling the heating and power sectors: The role of centralised combined heat and power plants and district heat in a European decarbonised power system," Applied Energy, Elsevier, vol. 270(C).
    6. Tina, G.M. & Passarello, G., 2012. "Short-term scheduling of industrial cogeneration systems for annual revenue maximisation," Energy, Elsevier, vol. 42(1), pages 46-56.
    7. Rong, Aiying & Lahdelma, Risto, 2007. "Efficient algorithms for combined heat and power production planning under the deregulated electricity market," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1219-1245, January.
    8. Marshman, D.J. & Chmelyk, T. & Sidhu, M.S. & Gopaluni, R.B. & Dumont, G.A., 2010. "Energy optimization in a pulp and paper mill cogeneration facility," Applied Energy, Elsevier, vol. 87(11), pages 3514-3525, November.
    9. Beisheim, Benedikt & Rahimi-Adli, Keivan & Krämer, Stefan & Engell, Sebastian, 2019. "Energy performance analysis of continuous processes using surrogate models," Energy, Elsevier, vol. 183(C), pages 776-787.
    10. Ansgar Weickgenannt & Ivan Kantor & François Maréchal & Jürg Schiffmann, 2021. "On the Application of Small-Scale Turbines in Industrial Steam Networks," Energies, MDPI, vol. 14(11), pages 1-17, May.
    11. Mallier, Lise & Hétreux, Gilles & Thery-Hétreux, Raphaele & Baudet, Philippe, 2021. "A modelling framework for energy system planning: Application to CHP plants participating in the electricity market," Energy, Elsevier, vol. 214(C).
    12. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    13. Bornapour, Mosayeb & Hooshmand, Rahmat-Allah & Khodabakhshian, Amin & Parastegari, Moein, 2016. "Optimal coordinated scheduling of combined heat and power fuel cell, wind, and photovoltaic units in micro grids considering uncertainties," Energy, Elsevier, vol. 117(P1), pages 176-189.
    14. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    15. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    16. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pengcheng Geng & Xiangsong Kong & Changqing Shi & Hang Liu & Jiabin Liu, 2022. "IK-SPSA-Based Performance Optimization Strategy for Steam Generator Level Control System of Nuclear Power Plant," Energies, MDPI, vol. 15(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santos, Maria Izabel & Uturbey, Wadaed, 2018. "A practical model for energy dispatch in cogeneration plants," Energy, Elsevier, vol. 151(C), pages 144-159.
    2. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Catalão, João P.S., 2017. "New framework for optimal scheduling of combined heat and power with electric and thermal storage systems considering industrial customers inter-zonal power exchanges," Energy, Elsevier, vol. 138(C), pages 1006-1015.
    3. Mallier, Lise & Hétreux, Gilles & Thery-Hétreux, Raphaele & Baudet, Philippe, 2021. "A modelling framework for energy system planning: Application to CHP plants participating in the electricity market," Energy, Elsevier, vol. 214(C).
    4. Assembayeva, Makpal & Egerer, Jonas & Mendelevitch, Roman & Zhakiyev, Nurkhat, 2018. "A spatial electricity market model for the power system: The Kazakhstan case study," Energy, Elsevier, vol. 149(C), pages 762-778.
    5. Hu, Chenlian & Liu, Xiao & Lu, Jie & Wang, Chi-Hwa, 2020. "Distributionally robust optimization for power trading of waste-to-energy plants under uncertainty," Applied Energy, Elsevier, vol. 276(C).
    6. Sang Hwa Song & Taesu Cheong, 2018. "Pattern-Based Set Partitioning Algorithm for the Integrated Sustainable Operation of a District Heating Network," Sustainability, MDPI, vol. 10(8), pages 1-15, August.
    7. Gao, Shuang & Jurasz, Jakub & Li, Hailong & Corsetti, Edoardo & Yan, Jinyue, 2022. "Potential benefits from participating in day-ahead and regulation markets for CHPs," Applied Energy, Elsevier, vol. 306(PA).
    8. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    9. Deetjen, Thomas A. & Vitter, J. Scott & Reimers, Andrew S. & Webber, Michael E., 2018. "Optimal dispatch and equipment sizing of a residential central utility plant for improving rooftop solar integration," Energy, Elsevier, vol. 147(C), pages 1044-1059.
    10. Boldrini, A. & Jiménez Navarro, J.P. & Crijns-Graus, W.H.J. & van den Broek, M.A., 2022. "The role of district heating systems to provide balancing services in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    11. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage," Energy, Elsevier, vol. 155(C), pages 620-629.
    12. Kia, Mohsen & Setayesh Nazar, Mehrdad & Sepasian, Mohammad Sadegh & Heidari, Alireza & Sharaf, Adel M., 2017. "Coordination of heat and power scheduling in micro-grid considering inter-zonal power exchanges," Energy, Elsevier, vol. 141(C), pages 519-536.
    13. Ghadimi, P. & Kara, S. & Kornfeld, B., 2014. "The optimal selection of on-site CHP systems through integrated sizing and operational strategy," Applied Energy, Elsevier, vol. 126(C), pages 38-46.
    14. Shang, Ce & Ge, Yuyou & Zhai, Suwei & Huo, Chao & Li, Wenyun, 2023. "Combined heat and power storage planning," Energy, Elsevier, vol. 279(C).
    15. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    16. Daniela Guericke & Ignacio Blanco & Juan M. Morales & Henrik Madsen, 2020. "A two-phase stochastic programming approach to biomass supply planning for combined heat and power plants," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(4), pages 863-900, December.
    17. Kumbartzky, Nadine & Schacht, Matthias & Schulz, Katrin & Werners, Brigitte, 2017. "Optimal operation of a CHP plant participating in the German electricity balancing and day-ahead spot market," European Journal of Operational Research, Elsevier, vol. 261(1), pages 390-404.
    18. Dowling, Alexander W. & Kumar, Ranjeet & Zavala, Victor M., 2017. "A multi-scale optimization framework for electricity market participation," Applied Energy, Elsevier, vol. 190(C), pages 147-164.
    19. Bloess, Andreas, 2020. "Modeling of combined heat and power generation in the context of increasing renewable energy penetration," Applied Energy, Elsevier, vol. 267(C).
    20. Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7213-:d:670555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.