IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p46-56.html
   My bibliography  Save this article

Short-term scheduling of industrial cogeneration systems for annual revenue maximisation

Author

Listed:
  • Tina, G.M.
  • Passarello, G.

Abstract

This paper addresses the optimisation of short-term hourly scheduling (one week ahead) of (CHPs) cogeneration plants inside large industrial sites. The heat demand in these sites is very high and is crucial for industrial processes.

Suggested Citation

  • Tina, G.M. & Passarello, G., 2012. "Short-term scheduling of industrial cogeneration systems for annual revenue maximisation," Energy, Elsevier, vol. 42(1), pages 46-56.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:46-56
    DOI: 10.1016/j.energy.2011.10.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211006840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.10.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thorin, Eva & Brand, Heike & Weber, Christoph, 2005. "Long-term optimization of cogeneration systems in a competitive market environment," Applied Energy, Elsevier, vol. 81(2), pages 152-169, June.
    2. Agha, Mujtaba H. & Thery, Raphaele & Hetreux, Gilles & Hait, Alain & Le Lann, Jean Marc, 2010. "Integrated production and utility system approach for optimizing industrial unit operations," Energy, Elsevier, vol. 35(2), pages 611-627.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keivan Rahimi-Adli & Egidio Leo & Benedikt Beisheim & Sebastian Engell, 2021. "Optimisation of the Operation of an Industrial Power Plant under Steam Demand Uncertainty," Energies, MDPI, vol. 14(21), pages 1-28, November.
    2. Macek, Karel & Mařík, Karel, 2012. "A methodology for quantitative comparison of control solutions and its application to HVAC (heating, ventilation and air conditioning) systems," Energy, Elsevier, vol. 44(1), pages 117-125.
    3. Ghadimi, P. & Kara, S. & Kornfeld, B., 2014. "The optimal selection of on-site CHP systems through integrated sizing and operational strategy," Applied Energy, Elsevier, vol. 126(C), pages 38-46.
    4. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    5. Mallier, Lise & Hétreux, Gilles & Thery-Hétreux, Raphaele & Baudet, Philippe, 2021. "A modelling framework for energy system planning: Application to CHP plants participating in the electricity market," Energy, Elsevier, vol. 214(C).
    6. Voll, Philip & Jennings, Mark & Hennen, Maike & Shah, Nilay & Bardow, André, 2015. "The optimum is not enough: A near-optimal solution paradigm for energy systems synthesis," Energy, Elsevier, vol. 82(C), pages 446-456.
    7. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2013. "Operational planning optimization of steam power plants considering equipment failure in petrochemical complex," Applied Energy, Elsevier, vol. 112(C), pages 1247-1264.
    8. Badami, M. & Camillieri, F. & Portoraro, A. & Vigliani, E., 2014. "Energetic and economic assessment of cogeneration plants: A comparative design and experimental condition study," Energy, Elsevier, vol. 71(C), pages 255-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zulkafli, Nur I. & Kopanos, Georgios M., 2016. "Planning of production and utility systems under unit performance degradation and alternative resource-constrained cleaning policies," Applied Energy, Elsevier, vol. 183(C), pages 577-602.
    2. Mitra, Sumit & Sun, Lige & Grossmann, Ignacio E., 2013. "Optimal scheduling of industrial combined heat and power plants under time-sensitive electricity prices," Energy, Elsevier, vol. 54(C), pages 194-211.
    3. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    4. Putna, Ondřej & Janošťák, František & Šomplák, Radovan & Pavlas, Martin, 2018. "Demand modelling in district heating systems within the conceptual design of a waste-to-energy plant," Energy, Elsevier, vol. 163(C), pages 1125-1139.
    5. Venter, Philip van Zyl & Terblanche, Stephanus Esias & van Eldik, Martin, 2018. "Turbine investment optimisation for energy recovery plants by utilising historic steam flow profiles," Energy, Elsevier, vol. 155(C), pages 668-677.
    6. Théry Hétreux, Raphaële & Hétreux, Gilles & Floquet, Pascal & Leclercq, Alexandre, 2021. "The energy Extended Resource Task Network, a general formalism for the modeling of production systems:Application to waste heat valorization," Energy, Elsevier, vol. 214(C).
    7. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    8. Glotić, Arnel & Zamuda, Aleš, 2015. "Short-term combined economic and emission hydrothermal optimization by surrogate differential evolution," Applied Energy, Elsevier, vol. 141(C), pages 42-56.
    9. Andreas Dietrich & Christian Furtwängler & Christoph Weber, "undated". "Thesenpapier: Managing combined power and heat portfolios in sequential spot power markets under uncertainty," EWL Working Papers 2003, University of Duisburg-Essen, Chair for Management Science and Energy Economics.
    10. Dong, Lianxin & Fan, Shuai & Wang, Zhihua & Xiao, Jucheng & Zhou, Huan & Li, Zuyi & He, Guangyu, 2021. "An adaptive decentralized economic dispatch method for virtual power plant," Applied Energy, Elsevier, vol. 300(C).
    11. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. Hawkes, A.D. & Leach, M.A., 2009. "Modelling high level system design and unit commitment for a microgrid," Applied Energy, Elsevier, vol. 86(7-8), pages 1253-1265, July.
    13. Dimitroulas, Dionisios K. & Georgilakis, Pavlos S., 2011. "A new memetic algorithm approach for the price based unit commitment problem," Applied Energy, Elsevier, vol. 88(12), pages 4687-4699.
    14. Hamdi Abdi, 2023. "A Survey of Combined Heat and Power-Based Unit Commitment Problem: Optimization Algorithms, Case Studies, Challenges, and Future Directions," Mathematics, MDPI, vol. 11(19), pages 1-36, October.
    15. Zhao, Xiancong & Bai, Hao & Shi, Qi & Lu, Xin & Zhang, Zhihui, 2017. "Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing," Applied Energy, Elsevier, vol. 195(C), pages 100-113.
    16. Wang, Jiangjiang & Zhai, Zhiqiang (John) & Jing, Youyin & Zhang, Chunfa, 2010. "Particle swarm optimization for redundant building cooling heating and power system," Applied Energy, Elsevier, vol. 87(12), pages 3668-3679, December.
    17. Rong, Aiying & Lahdelma, Risto & Grunow, Martin, 2009. "An improved unit decommitment algorithm for combined heat and power systems," European Journal of Operational Research, Elsevier, vol. 195(2), pages 552-562, June.
    18. Milan, Christian & Stadler, Michael & Cardoso, Gonçalo & Mashayekh, Salman, 2015. "Modeling of non-linear CHP efficiency curves in distributed energy systems," Applied Energy, Elsevier, vol. 148(C), pages 334-347.
    19. Whei-Min Lin & Chung-Yuen Yang & Chia-Sheng Tu & Hsi-Shan Huang & Ming-Tang Tsai, 2019. "The Optimal Energy Dispatch of Cogeneration Systems in a Liberty Market," Energies, MDPI, vol. 12(15), pages 1-15, July.
    20. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:46-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.