IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p3060-d1371146.html
   My bibliography  Save this article

Study on the Structure, Efficiency, and Driving Factors of an Eco-Agricultural Park Based on Emergy: A Case Study of Jinchuan Eco-Agricultural Park

Author

Listed:
  • Ziwei Li

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China)

  • Qiuying Ma

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China)

  • Yong Wang

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China)

  • Fengxue Shi

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China
    Natural History Museum of Jilin Province and Northeast Normal University, Changchun 130117, China)

  • Haibo Jiang

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China)

  • Chunguang He

    (State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
    Jilin Province Key Laboratory of Ecological Restoration and Ecosystem Management, School of Environment, Northeast Normal University, Changchun 130117, China)

Abstract

The eco-agricultural park is a new comprehensive agricultural technology system integrating agricultural production, rural economic development, ecological environment protection, and efficient resource utilization. Therefore, an in-depth analysis of the ecosystem structure of eco-agricultural parks will help achieve the goal of coordinated symbiosis between human development and environmental protection. This study takes the research area of the Eco-agricultural Park of Jinchuan Town, Huinan County, a typical town in the Changbai Mountains of Northeast China. Based on field surveys, market research, farmer consultation, and related data collection, emergy theory and methods are used to construct an emergy model for the park. The value evaluation index system integrates the unique emergy index of the agricultural ecosystem with the traditional emergy index system to conduct a targeted evaluation of the park’s functional structure and sustainable development capabilities in order to improve the efficiency of material and energy use and provide technical reference for ecological construction and comprehensive development of agricultural industry in mountainous areas in northern China. The research results show that: (1) The annual input total emergy of the eco-agricultural park is 4.04E+24 sej/a, and the emergy of labor input, electricity input, and topsoil loss is relatively high. The park is in a labor-intensive stage. The annual output total emergy is 5.09E+24 sej/a, the park is dominated by planting and forestry industries. (2) The park’s emergy utilization intensity is high—production efficiency is high, economic development is advanced, and the system’s self-control, adjustment, and feedback functions are vital—and plays a significant role in promoting the development of the regional economy. However, the park relies more on investment from external resources, and production in the park puts pressure on the environment. (3) The current sustainable development capability of the study area is weak, and the factors affecting the sustainable development capability are mainly energy loss and uneven distribution of industrial areas in the park. Effective measures to promote the transformation of the park to develop technology-intensive industries and improve the sustainable development performance of the park were proposed. These include: adjusting the proportion of industries in the park; reducing high-energy external input emergy, such as industrial auxiliary emergy; reducing the loss of non-renewable natural resources through ecological engineering measures, such as reducing the depth of slope runoff in the park; and combining modern resource-based production technology and environmentally sound management methods to reduce energy loss and rational use of natural resources.

Suggested Citation

  • Ziwei Li & Qiuying Ma & Yong Wang & Fengxue Shi & Haibo Jiang & Chunguang He, 2024. "Study on the Structure, Efficiency, and Driving Factors of an Eco-Agricultural Park Based on Emergy: A Case Study of Jinchuan Eco-Agricultural Park," Sustainability, MDPI, vol. 16(7), pages 1-19, April.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3060-:d:1371146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/3060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/3060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiuhong & Shen, Jianxiu & Zhang, Wei, 2014. "Emergy evaluation of agricultural sustainability of Northwest China before and after the grain-for-green policy," Energy Policy, Elsevier, vol. 67(C), pages 508-516.
    2. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    3. Shaohui Liu & Qingwen Min & Wenjun Jiao & Chuanjiang Liu & Jianzhong Yin, 2018. "Integrated Emergy and Economic Evaluation of Huzhou Mulberry-Dyke and Fish-Pond Systems," Sustainability, MDPI, vol. 10(11), pages 1-11, October.
    4. Xie, Hualin & Huang, Yingqian & Choi, Yongrok & Shi, Jiaying, 2021. "Evaluating the sustainable intensification of cultivated land use based on emergy analysis," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    5. Campbell, Daniel E., 2016. "Emergy baseline for the Earth: A historical review of the science and a new calculation," Ecological Modelling, Elsevier, vol. 339(C), pages 96-125.
    6. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    7. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yanfeng & Yang, Xiangdong & Ma, Xiaohan & Pan, Hengyu & Zhang, Xiaohong, 2023. "Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach," Ecological Modelling, Elsevier, vol. 478(C).
    2. Hamidreza Shahhoseini & Mahmoud Ramroudi & Hossein Kazemi, 2023. "Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6393-6418, July.
    3. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    4. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    5. Xingguo Gu & Qixian Lai & Moucheng Liu & Ziqun He & Qingyang Zhang & Qingwen Min, 2019. "Sustainability Assessment of a Qingyuan Mushroom Culture System Based on Emergy," Sustainability, MDPI, vol. 11(18), pages 1-13, September.
    6. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    7. Berrios, Fernando & Campbell, Daniel E. & Ortiz, Marco, 2017. "Emergy evaluation of benthic ecosystems influenced by upwelling in northern Chile: Contributions of the ecosystems to the regional economy," Ecological Modelling, Elsevier, vol. 359(C), pages 146-164.
    8. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    9. Zilong Zhang & Xingpeng Chen & Peter Heck, 2014. "Emergy-Based Regional Socio-Economic Metabolism Analysis: An Application of Data Envelopment Analysis and Decomposition Analysis," Sustainability, MDPI, vol. 6(12), pages 1-21, November.
    10. Tan, Kangming & Li, Yuliang & Chen, Yun & Liu, Fangdan & Ou, Jingmin & Zhang, Yuhan & Wang, Xiaolong, 2022. "Modified framework to reflect contribution of soil storage in emergy synthesis under different agricultural practices at farm level," Ecological Modelling, Elsevier, vol. 465(C).
    11. Qingsong Wang & Hongkun Xiao & Qiao Ma & Xueliang Yuan & Jian Zuo & Jian Zhang & Shuguang Wang & Mansen Wang, 2020. "Review of Emergy Analysis and Life Cycle Assessment: Coupling Development Perspective," Sustainability, MDPI, vol. 12(1), pages 1-13, January.
    12. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    13. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    14. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
    15. Xingguo Gu & Ying Wang & Keyi Shi & Fuyan Ke & Shanting Ying & Qixian Lai, 2022. "Emergy-Based Sustainability Evaluation of the Mulberry-Dyke and Fish-Pond System on the South Bank of Taihu Lake, China," Sustainability, MDPI, vol. 14(17), pages 1-17, August.
    16. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    17. Gustavo Bustamante & Biagio Fernando Giannetti & Feni Agostinho & Gengyuan Liu & Cecília M. V. B. Almeida, 2022. "Prioritizing Cleaner Production Actions towards Circularity: Combining LCA and Emergy in the PET Production Chain," Sustainability, MDPI, vol. 14(11), pages 1-15, June.
    18. Siegel, Eric & Brown, Mark T. & De Vilbiss, Chris & Arden, Sam, 2016. "Calculating solar equivalence ratios of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle," Ecological Modelling, Elsevier, vol. 339(C), pages 140-147.
    19. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    20. Oliveira, Mariana & Cocozza, Annalisa & Zucaro, Amalia & Santagata, Remo & Ulgiati, Sergio, 2021. "Circular economy in the agro-industry: Integrated environmental assessment of dairy products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:3060-:d:1371146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.