IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i7d10.1007_s10668-022-02309-3.html
   My bibliography  Save this article

Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)

Author

Listed:
  • Hamidreza Shahhoseini

    (University of Zabol)

  • Mahmoud Ramroudi

    (University of Zabol)

  • Hossein Kazemi

    (Gorgan University of Agricultural Sciences and Natural Resources (GUASNR))

Abstract

Intensification in cropping systems with limited natural resources has necessitated the determination of agroecosystem sustainability in terms of both economic and environmental aspects. Emergy analysis is adopted to determine the most important indicators related to efficiency, renewability, environmental pressure, and sustainability of potato agroecosystems. The present study was carried out in 2018 using monitoring, questionnaires, and in-person interview with 120 farm managers and farmers in the autumn potato agroecosystems of Golestan province, located in northeastern Iran. The emergy indices were calculated following the determination of different inputs and outputs of the agroecosystems. The spatial distribution of emergy indices was analyzed in geographic information systems (GIS) environment. For this purpose, GIS–emergy tools were defined by different geostatistical and classic interpolation methods. The results revealed that total emergy input was 1.71E + 16 seJ ha−1 yr−1 for supporting the potato production system. Among all inputs, groundwater had the highest share because of the high water requirement of the potato crop and surface irrigation in most agroecosystems. Based on the data from the surveyed fields, over two-thirds of the total emergy input was related to the purchased resources, which indicated that potato production systems were extremely open systems and influenced by the market. Furthermore, transformity and specific emergy were 1.50E + 05 seJ J−1 and 5.41E + 08 seJ gr−1, respectively, which points to the efficiency of autumn potato production systems. Renewability in this research was almost 22.85%, which indicates the heavy dependence of this production system on non-renewable resources. In potato agroecosystem, emergy yield ratio was equal to 1.44, emergy investment ratio was calculated as 2.29, standard environmental loading ratio was equal to 29.10, modified environmental loading ratio was obtained as 3.38, standard emergy sustainability index was found to be 0.05, and modified emergy sustainability index was equal to 0.57. The emergy indicators attributed to the environment shed light on how this production system exerts extensive environmental impact and is a depleting producing system that needs to use a large amount of energy. In final, acceptance of more sustainable techniques, especially new irrigation systems, conservation tillage methods, and use of suitable potato seeds, may reduce the environmental loading and increase the sustainability of the potato agroecosystems in Golestan province.

Suggested Citation

  • Hamidreza Shahhoseini & Mahmoud Ramroudi & Hossein Kazemi, 2023. "Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6393-6418, July.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:7:d:10.1007_s10668-022-02309-3
    DOI: 10.1007/s10668-022-02309-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02309-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02309-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zangeneh, Morteza & Omid, Mahmoud & Akram, Asadollah, 2010. "A comparative study on energy use and cost analysis of potato production under different farming technologies in Hamadan province of Iran," Energy, Elsevier, vol. 35(7), pages 2927-2933.
    2. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    3. Agostinho, Feni & Diniz, Guaraci & Siche, Raúl & Ortega, Enrique, 2008. "The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil," Ecological Modelling, Elsevier, vol. 210(1), pages 37-57.
    4. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    5. Brown, M. T. & Herendeen, R. A., 1996. "Embodied energy analysis and EMERGY analysis: a comparative view," Ecological Economics, Elsevier, vol. 19(3), pages 219-235, December.
    6. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    7. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    8. Ghisellini, Patrizia & Zucaro, Amalia & Viglia, Silvio & Ulgiati, Sergio, 2014. "Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis," Ecological Modelling, Elsevier, vol. 271(C), pages 132-148.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Lyu, Yanfeng & Yang, Xiangdong & Ma, Xiaohan & Pan, Hengyu & Zhang, Xiaohong, 2023. "Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach," Ecological Modelling, Elsevier, vol. 478(C).
    3. Fartout Enayat, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel, 2023. "Emergy ecological footprint analysis of Yaghooti grape production in the Sistan region of Iran," Ecological Modelling, Elsevier, vol. 481(C).
    4. Ziwei Li & Qiuying Ma & Yong Wang & Fengxue Shi & Haibo Jiang & Chunguang He, 2024. "Study on the Structure, Efficiency, and Driving Factors of an Eco-Agricultural Park Based on Emergy: A Case Study of Jinchuan Eco-Agricultural Park," Sustainability, MDPI, vol. 16(7), pages 1-19, April.
    5. Oliveira, M. & Zucaro, A. & Santagata, R. & Ulgiati, S., 2022. "Environmental assessment of milk production from local to regional scales," Ecological Modelling, Elsevier, vol. 463(C).
    6. Amiri, Zahra & Asgharipour, Mohammad Reza & Moghadam, Esfandiar Hassani & Kakolvand, Ebrahim & Campbell, Daniel E., 2022. "Investigating the need to replace the conventional method of sugar beet production in lorestan province, iran based on the arguments obtained from emergy calculations," Ecological Modelling, Elsevier, vol. 472(C).
    7. Miguel Angel Avalos-Rangel & Daniel E. Campbell & Delfino Reyes-López & Rolando Rueda-Luna & Ricardo Munguía-Pérez & Manuel Huerta-Lara, 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    8. Lyu, Yanfeng & Raugei, Marco & Zhang, Xiaohong & Mellino, Salvatore & Ulgiati, Sergio, 2021. "Environmental cost and impacts of chemicals used in agriculture: An integration of emergy and Life Cycle Assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Eyni-Nargeseh, Hamed & Asgharipour, Mohammad Reza & Rahimi-Moghaddam, Sajjad & Gilani, Abdolali & Damghani, Abdolmajid Mahdavi & Azizi, Khosro, 2023. "Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis," Ecological Modelling, Elsevier, vol. 481(C).
    10. Shah, Syed Mahboob & Liu, Gengyuan & Yang, Qing & Casazza, Marco & Agostinho, Feni & Giannetti, Biagio F., 2021. "Sustainability assessment of agriculture production systems in Pakistan: A provincial-scale energy-based evaluation," Ecological Modelling, Elsevier, vol. 455(C).
    11. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    12. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    13. Paolo Vassallo & Claudia Turcato & Ilaria Rigo & Claudia Scopesi & Andrea Costa & Matteo Barcella & Giulia Dapueto & Mauro Mariotti & Chiara Paoli, 2021. "Biophysical Accounting of Forests’ Value under Different Management Regimes: Conservation vs. Exploitation," Sustainability, MDPI, vol. 13(9), pages 1-20, April.
    14. Wang, Saige & Cao, Tao & Chen, Bin, 2017. "Urban energy–water nexus based on modified input–output analysis," Applied Energy, Elsevier, vol. 196(C), pages 208-217.
    15. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    16. Almeida, C.M.V.B. & Borges, D. & Bonilla, S.H. & Giannetti, B.F., 2010. "Identifying improvements in water management of bus-washing stations in Brazil," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 821-831.
    17. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    18. Xiang, Qing & Pan, Hengyu & Ma, Xiaohan & Yang, Mingdong & Lyu, Yanfeng & Zhang, Xiaohong & Shui, Wei & Liao, Wenjie & Xiao, Yinlong & Wu, Jun & Zhang, Yanzong & Xu, Min, 2024. "Impacts of energy-saving and emission-reduction on sustainability of cement production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    19. Bonilla, Silvia H. & Papalardo, Fábio & Tassinari, Celso A. & Sacomano, Jose B. & de Carvalho, Fabio Romeu, 2019. "Contribution of the Paraconsistent Tri-Annotated Logic to emergy accounting and decision making," Ecological Modelling, Elsevier, vol. 393(C), pages 98-106.
    20. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:7:d:10.1007_s10668-022-02309-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.