IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v472y2022ics030438002200196x.html
   My bibliography  Save this article

Investigating the need to replace the conventional method of sugar beet production in lorestan province, iran based on the arguments obtained from emergy calculations

Author

Listed:
  • Amiri, Zahra
  • Asgharipour, Mohammad Reza
  • Moghadam, Esfandiar Hassani
  • Kakolvand, Ebrahim
  • Campbell, Daniel E.

Abstract

Emergy analysis provided us with an opportunity to compare the sustainability of three different sugar beet production systems in Lorestan Province, Iran in 2019–2020. Emergy allows us to quantify the qualitative characteristics of sustainability by analyzing the production structure and calculating emergy indices. The total inputs of emergy for sugar beet production related to the spring direct seeding system were, respectively, 24% and 69% higher than the systems used for summer seedling and autumn direct seeding. In other words, the Emergy Flow Density (EFD) sej m − 2 was highest in the spring direct seeding system, indicating the higher stress exerted by this system on the environment and its lower sustainability. All the emergy indices, except for the Emergy Index of Product Safety, revealed more favorable sustainability of the autumn seeding system, because of its lower EFD compared with the other two systems. According to the economic-ecological index, Environmental Benefit Density, the autumn direct cultivation system provided more than twice the environmental benefits per unit area. Therefore, replacing the spring direct seeding and summer seedling systems with the autumn direct seeding system is recommended, for suitable climates. In future studies, the sustainability of the autumn sugar beet seedling system should be evaluated.

Suggested Citation

  • Amiri, Zahra & Asgharipour, Mohammad Reza & Moghadam, Esfandiar Hassani & Kakolvand, Ebrahim & Campbell, Daniel E., 2022. "Investigating the need to replace the conventional method of sugar beet production in lorestan province, iran based on the arguments obtained from emergy calculations," Ecological Modelling, Elsevier, vol. 472(C).
  • Handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s030438002200196x
    DOI: 10.1016/j.ecolmodel.2022.110091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030438002200196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    2. Miguel A. Altieri & Clara I. Nicholls & Rene Montalba, 2017. "Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective," Sustainability, MDPI, vol. 9(3), pages 1-13, February.
    3. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    4. Agostinho, Feni & Diniz, Guaraci & Siche, Raúl & Ortega, Enrique, 2008. "The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil," Ecological Modelling, Elsevier, vol. 210(1), pages 37-57.
    5. Fonseca, Ana Margarida P. & Marques, Carlos A.F. & Pinto-Correia, Teresa & Guiomar, Nuno & Campbell, Daniel E., 2019. "Emergy evaluation for decision-making in complex multifunctional farming systems," Agricultural Systems, Elsevier, vol. 171(C), pages 1-12.
    6. Chen, Wei & Liu, Wenjing & Geng, Yong & Brown, Mark T. & Gao, Cuixia & Wu, Rui, 2017. "Recent progress on emergy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1051-1060.
    7. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Hamidreza Shahhoseini & Mahmoud Ramroudi & Hossein Kazemi, 2023. "Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6393-6418, July.
    3. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    4. Zhuang, Minghao & Liu, Yize & Yang, Yi & Zhang, Qingsong & Ying, Hao & Yin, Yulong & Cui, Zhenling, 2022. "The sustainability of staple crops in China can be substantially improved through localized strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wu, Xihui & Wu, Faqi & Tong, Xiaogang & Wu, Jia & Sun, Lu & Peng, Xiaoyu, 2015. "Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 40-50.
    6. Bonilla, Silvia H. & Papalardo, Fábio & Tassinari, Celso A. & Sacomano, Jose B. & de Carvalho, Fabio Romeu, 2019. "Contribution of the Paraconsistent Tri-Annotated Logic to emergy accounting and decision making," Ecological Modelling, Elsevier, vol. 393(C), pages 98-106.
    7. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    8. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    9. Yinan Xu & Yingxing Zhao & Peng Sui & Wangsheng Gao & Zhijun Li & Yuanquan Chen, 2021. "Emergy-Based Evaluation on the Systemic Sustainability of Rural Ecosystem under China Poverty Alleviation and Rural Revitalization: A Case of the Village in North China," Energies, MDPI, vol. 14(13), pages 1-16, July.
    10. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    11. Wang, Chengdong & Wang, Yutao & Tong, Xin & Ulgiati, Sergio & Liang, Sai & Xu, Ming & Wei, Wendong & Li, Xiao & Jin, Mingzhou & Mao, Jiafu, 2020. "Mapping potentials and bridging regional gaps of renewable resources in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    13. Lee, Ying-Chieh & Liao, Pei-Ting, 2021. "The effect of tourism on teleconnected ecosystem services and urban sustainability: An emergy approach," Ecological Modelling, Elsevier, vol. 439(C).
    14. Fartout Enayat, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel, 2023. "Emergy ecological footprint analysis of Yaghooti grape production in the Sistan region of Iran," Ecological Modelling, Elsevier, vol. 481(C).
    15. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    16. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    17. Lee, Dong Joo & Choi, Moon Bo, 2020. "Ecological value of global terrestrial plants," Ecological Modelling, Elsevier, vol. 438(C).
    18. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    19. Miguel Angel Avalos-Rangel & Daniel E. Campbell & Delfino Reyes-López & Rolando Rueda-Luna & Ricardo Munguía-Pérez & Manuel Huerta-Lara, 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    20. Meimei Wu & Wei Ge & Zening Wu & Xi Guo & Danyang Di & Shuoqiao Huang, 2020. "Evaluation of the Benefits of Urban Water Resource Utilization Based on the Catastrophe and Emergy Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(6), pages 1843-1853, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:472:y:2022:i:c:s030438002200196x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.