IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v96y2015icp40-50.html
   My bibliography  Save this article

Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes

Author

Listed:
  • Wu, Xihui
  • Wu, Faqi
  • Tong, Xiaogang
  • Wu, Jia
  • Sun, Lu
  • Peng, Xiaoyu

Abstract

The use of ecological recycling in agriculture represents a new type of agricultural development that is coming into increasing use in China. This approach to cultivation is driven by developing reciprocating, multilevel, high-efficiency energy and material flows in the use of agricultural resources. In the present study, the emergy method was used to assess an integrated agricultural model in Northwest China consisting of multiple subsystems (walnut and grains; pigs and poultry; and biogas) by considering the partial renewability factor of each input. The recycle benefit ratio, greenhouse gas emission mitigation intensity, and conventional emergy indices of the integrated model were quantified by analyzing the structure of recycling. This model for agricultural production achieved great benefits from recycling and a net greenhouse gas emission mitigation potential of 94,174.28kg CO2-eq/yr compared to conventional production models. For example, the integrated model had improved resource and land use efficiencies, environmental performance, output per unit area, and sustainability compared to the local conventional corn production system, despite its relatively high environmental load and poor sustainability. Using renewable materials such as organic corn in place of conventional corn provides an alternative way of improving the sustainability of the integrated production system but with a considerable decrease in economic profitability.

Suggested Citation

  • Wu, Xihui & Wu, Faqi & Tong, Xiaogang & Wu, Jia & Sun, Lu & Peng, Xiaoyu, 2015. "Emergy and greenhouse gas assessment of a sustainable, integrated agricultural model (SIAM) for plant, animal and biogas production: Analysis of the ecological recycle of wastes," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 40-50.
  • Handle: RePEc:eee:recore:v:96:y:2015:i:c:p:40-50
    DOI: 10.1016/j.resconrec.2015.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344915000117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2015.01.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    2. Agostinho, Feni & Diniz, Guaraci & Siche, Raúl & Ortega, Enrique, 2008. "The use of emergy assessment and the Geographical Information System in the diagnosis of small family farms in Brazil," Ecological Modelling, Elsevier, vol. 210(1), pages 37-57.
    3. Campbell, Daniel E. & Lu, Hongfang & Lin, Bin-Le, 2014. "Emergy evaluations of the global biogeochemical cycles of six biologically active elements and two compounds," Ecological Modelling, Elsevier, vol. 271(C), pages 32-51.
    4. Agostinho, Feni & Ortega, Enrique, 2012. "Integrated food, energy and environmental services production as an alternative for small rural properties in Brazil," Energy, Elsevier, vol. 37(1), pages 103-114.
    5. Yang, Z.F. & Jiang, M.M. & Chen, B. & Zhou, J.B. & Chen, G.Q. & Li, S.C., 2010. "Solar emergy evaluation for Chinese economy," Energy Policy, Elsevier, vol. 38(2), pages 875-886, February.
    6. Zhang, L.X. & Yang, Z.F. & Chen, G.Q., 2007. "Emergy analysis of cropping-grazing system in Inner Mongolia Autonomous Region, China," Energy Policy, Elsevier, vol. 35(7), pages 3843-3855, July.
    7. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Zhang & Lingling Zhang & Meijuan He & Zongzhi Wang, 2023. "Spatial Association Network and Driving Factors of Agricultural Eco-Efficiency in the Hanjiang River Basin, China," Agriculture, MDPI, vol. 13(6), pages 1-16, May.
    2. You, Heyuan & Zhang, Xiaoling, 2017. "Sustainable livelihoods and rural sustainability in China: Ecologically secure, economically efficient or socially equitable?," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 1-13.
    3. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    4. Wang, Xiaolong & Li, Zhejin & Long, Pan & Yan, Lingling & Gao, Wangsheng & Chen, Yuanquan & Sui, Peng, 2017. "Sustainability evaluation of recycling in agricultural systems by emergy accounting," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 114-124.
    5. Yue, Qiong & Guo, Ping & Wu, Hui & Wang, Youzhi & Zhang, Chenglong, 2022. "Towards sustainable circular agriculture: An integrated optimization framework for crop-livestock-biogas-crop recycling system management under uncertainty," Agricultural Systems, Elsevier, vol. 196(C).
    6. Marta Szyba & Jerzy Mikulik, 2022. "Energy Production from Biodegradable Waste as an Example of the Circular Economy," Energies, MDPI, vol. 15(4), pages 1-16, February.
    7. Grzegorz Augustyn & Jerzy Mikulik & Rafał Rumin & Marta Szyba, 2021. "Energy Self-Sufficient Livestock Farm as the Example of Agricultural Hybrid Off-Grid System," Energies, MDPI, vol. 14(21), pages 1-22, October.
    8. Tan, Kangming & Li, Yuliang & Chen, Yun & Liu, Fangdan & Ou, Jingmin & Zhang, Yuhan & Wang, Xiaolong, 2022. "Modified framework to reflect contribution of soil storage in emergy synthesis under different agricultural practices at farm level," Ecological Modelling, Elsevier, vol. 465(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Mingyue & Zhang, Lixiao & Ulgiati, Sergio & Wang, Changbo, 2015. "Ecological impacts of small hydropower in China: Insights from an emergy analysis of a case plant," Energy Policy, Elsevier, vol. 76(C), pages 112-122.
    2. Lu, Hong-fang & Lin, Bin-le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2016. "Interactions among energy consumption, economic development and greenhouse gas emissions in Japan after World War II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1060-1072.
    3. Lu, Hongfang & Xu, FengYing & Liu, Hongxiao & Wang, Jun & Campbell, Daniel E. & Ren, Hai, 2019. "Emergy-based analysis of the energy security of China," Energy, Elsevier, vol. 181(C), pages 123-135.
    4. Di Salvo, André L.A. & Agostinho, Feni & Almeida, Cecília M.V.B. & Giannetti, Biagio F., 2017. "Can cloud computing be labeled as “green”? Insights under an environmental accounting perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 514-526.
    5. Zhang, Xiaohong & Wu, Liqian & Zhang, Rong & Deng, Shihuai & Zhang, Yanzong & Wu, Jun & Li, Yuanwei & Lin, Lili & Li, Li & Wang, Yinjun & Wang, Lilin, 2013. "Evaluating the relationships among economic growth, energy consumption, air emissions and air environmental protection investment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 259-270.
    6. Agostinho, F. & Oliveira, M.W. & Pulselli, F.M. & Almeida, C.M.V.B. & Giannetti, B.F., 2019. "Emergy accounting as a support for a strategic planning towards a regional sustainable milk production," Agricultural Systems, Elsevier, vol. 176(C).
    7. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    8. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    9. Deymi-Dashtebayaz, Mahdi & Norani, Marziye, 2021. "Sustainability assessment and emergy analysis of employing the CCHP system under two different scenarios in a data center," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Qiang Wang & Thomas Dogot & Xianlei Huang & Linna Fang & Changbin Yin, 2020. "Coupling of Rural Energy Structure and Straw Utilization: Based on Cases in Hebei, China," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    11. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    12. Ferraro, D.O. & Benzi, P., 2015. "A long-term sustainability assessment of an Argentinian agricultural system based on emergy synthesis," Ecological Modelling, Elsevier, vol. 306(C), pages 121-129.
    13. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    14. Lyu Yun & Jing Li & Ruixing Hou & Zhigang Sun & Peifei Cong & Rubiao Liang & Sheng Hang & Huarui Gong & Zhu Ouyang, 2019. "Emergy-Based Sustainability Analysis of an Ecologically Integrated Model with Maize Planting for Silage and Pig-Raising in the North China Plain," Sustainability, MDPI, vol. 11(22), pages 1-17, November.
    15. Amiri, Zahra & Asgharipour, Mohammad Reza & Moghadam, Esfandiar Hassani & Kakolvand, Ebrahim & Campbell, Daniel E., 2022. "Investigating the need to replace the conventional method of sugar beet production in lorestan province, iran based on the arguments obtained from emergy calculations," Ecological Modelling, Elsevier, vol. 472(C).
    16. Xia, X.H. & Huang, G.T. & Chen, G.Q. & Zhang, Bo & Chen, Z.M. & Yang, Q., 2011. "Energy security, efficiency and carbon emission of Chinese industry," Energy Policy, Elsevier, vol. 39(6), pages 3520-3528, June.
    17. Zhang, XiaoHong & Hu, He & Zhang, Rong & Deng, ShiHuai, 2014. "Interactions between China׳s economy, energy and the air emissions and their policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 624-638.
    18. Dong, X.B. & Yu, B.H. & Brown, M.T. & Zhang, Y.S. & Kang, M.Y. & Jin, Y. & Zhang, X.S. & Ulgiati, S., 2014. "Environmental and economic consequences of the overexploitation of natural capital and ecosystem services in Xilinguole League, China," Energy Policy, Elsevier, vol. 67(C), pages 767-780.
    19. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    20. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:96:y:2015:i:c:p:40-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.