IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i7p2896-d1367457.html
   My bibliography  Save this article

Biodiesel Production through the Transesterification of Non-Edible Plant Oils Using Glycerol Separation Technique with AC High Voltage

Author

Listed:
  • Saad S. Almady

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Ali I. Moussa

    (Agricultural Engineering Research Institute (AENRI), Agricultural Research Centre, Giza P.O. Box 256, Egypt)

  • Mohammed M. Deef

    (Agricultural Engineering Research Institute (AENRI), Agricultural Research Centre, Giza P.O. Box 256, Egypt)

  • Moamen F. Zayed

    (Agricultural Engineering Research Institute (AENRI), Agricultural Research Centre, Giza P.O. Box 256, Egypt)

  • Saleh M. Al-Sager

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

  • Abdulwahed M. Aboukarima

    (Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia)

Abstract

The biodiesel industry is a promising field globally, and is expanding significantly and quickly. To create a biodiesel business that is both sustainable and commercially feasible, a number of studies have been conducted on the use of non-edible oils to produce biodiesel. Thus, this study highlights biodiesel synthesis from non-edible plant oils such as pongamia and jatropha using a glycerol separation technique with an AC high voltage method through the transesterification reaction. In this context, non-edible plant oil has emerged as an alternative with a high potential for making the biodiesel process sustainable. Moreover, the study introduces how the created biodiesel fuel behaves when burned in a diesel engine. The results showed that the optimum conditions for creating biodiesel were a temperature of 60 °C, a potassium hydroxide catalyst percentage by weight of oils of 1%, and a stirring time of 60 min at a 5:1 ( v / v ) ratio of methanol to oil. A high-voltage procedure was used to separate glycerol and biodiesel using two electrodes of copper with different distances between them and different high voltages. The results showed that, for a batch of 15 L, the minimum separating time was 10 min when the distance between the copper electrodes was 2.5 cm, and the high voltage was 15 kV. The density, kinematic viscosity, and flash point of jatropha oil were reduced from 0.920 to 0.881 g/cm 3 at 15 °C, from 37.1 to 4.38 cSt at 40 °C, and from 211 to 162 °C, respectively, for the production of biodiesel. Additionally, the density, kinematic viscosity, and flash point of pongamia oil were reduced from 0.924 to 0.888 g/cm 3 at 15 °C, from 27.8 to 5.23 cSt at 40 °C, and from 222 to 158 °C, respectively, for the production of biodiesel. The calorific value of jatropha oil was increased from 38.08 to 39.65 MJ/kg for the production of biodiesel, while that of pongamia oil was increased from 36.61 to 36.94 MJ/kg. The cetane number increased from 21 for oil to 50 for biodiesel and from 32 for oil to 52 for jatropha and pongamia biodiesel, respectively. In order to run an air-cooled, single-cylinder, four-stroke diesel engine at full load, the produced biodiesel fuel was blended with diesel fuel at different percentages—10, 20, and 30%—for jatropha and pongamia methyl esters. The produced engine power values were 3.91, 3.69, and 3.29 kW for B10, B20, and B30, respectively, compared with the engine power value of jatropha methyl ester, which was 4.12 kW for diesel fuel (B00); meanwhile, the values were 3.70, 3.36, and 3.07 kW for B10, B20 and B30, respectively, for pongamia methyl ester. The findings suggest that the biodiesel derived from non-edible oils, such as pongamia and jatropha, could be a good alternative to diesel fuel.

Suggested Citation

  • Saad S. Almady & Ali I. Moussa & Mohammed M. Deef & Moamen F. Zayed & Saleh M. Al-Sager & Abdulwahed M. Aboukarima, 2024. "Biodiesel Production through the Transesterification of Non-Edible Plant Oils Using Glycerol Separation Technique with AC High Voltage," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2896-:d:1367457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/7/2896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/7/2896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    2. Farhad Taghizadeh Hesary & Naoyuki Yoshino & Ghahraman Abdoli & Asadollah Farzinvash, 2013. "An Estimation of the Impact of Oil Shocks on Crude Oil Exporting Economies and Their Trade Partners," Frontiers of Economics in China-Selected Publications from Chinese Universities, Higher Education Press, vol. 8(4), pages 571-591, December.
    3. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wen-Chao & Li, Xia & Zhu, Jia-Qing & Qin, Lei & Li, Bing-Zhi & Yuan, Ying-Jin, 2018. "Improving xylose utilization and ethanol production from dry dilute acid pretreated corn stover by two-step and fed-batch fermentation," Energy, Elsevier, vol. 157(C), pages 877-885.
    2. Pham T. T. Trinh & Bui T. T. My, 2023. "The impact of world oil price shocks on macroeconomic variables in Vietnam: the transmission through domestic oil price," Asian-Pacific Economic Literature, The Crawford School, The Australian National University, vol. 37(1), pages 67-87, May.
    3. Yoshino, Naoyuki & Taghizadeh–Hesary, Farhad & Nakahigashi, Masaki, 2019. "Modelling the social funding and spill-over tax for addressing the green energy financing gap," Economic Modelling, Elsevier, vol. 77(C), pages 34-41.
    4. Naoyuki Yoshino & Victoriia Alekhina, 2016. "Impact of oil price fluctuations on an energy-exporting economy: Evidence from Russia," Journal of Administrative and Business Studies, Professor Dr. Usman Raja, vol. 2(4), pages 156-166.
    5. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    6. Lechón, Y. & de la Rúa, C. & Rodríguez, I. & Caldés, N., 2019. "Socioeconomic implications of biofuels deployment through an Input-Output approach. A case study in Uruguay," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 178-191.
    7. Rasoulinezhad, Ehsan & Sung, Jinsok & Talipova, Amina & Taghizadeh-Hesary, Farhad, 2022. "Analyzing energy trade policy in Central Asia using the intercountry trade force approach," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 441-454.
    8. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    9. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    10. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.
    11. Solmaz, Hamit & Ardebili, Seyed Mohammad Safieddin & Calam, Alper & Yılmaz, Emre & İpci, Duygu, 2021. "Prediction of performance and exhaust emissions of a CI engine fueled with multi-wall carbon nanotube doped biodiesel-diesel blends using response surface method," Energy, Elsevier, vol. 227(C).
    12. Phanankosi Moyo & Mahluli Moyo & Donatus Dube & Oswell Rusinga, 2013. "Biofuel Policy as a Key Driver for Sustainable Development in the Biofuel Sector: The Missing Ingredient in Zimbabwe’s Biofuel Pursuit," Modern Applied Science, Canadian Center of Science and Education, vol. 8(1), pages 1-36, February.
    13. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).
    14. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    15. Sacchelli, Sandro & De Meo, Isabella & Paletto, Alessandro, 2013. "Bioenergy production and forest multifunctionality: A trade-off analysis using multiscale GIS model in a case study in Italy," Applied Energy, Elsevier, vol. 104(C), pages 10-20.
    16. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuşkaya, Sevda, 2017. "Can biomass energy be an efficient policy tool for sustainable development?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 830-845.
    17. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Cao, Yan & Doustgani, Amir & Salehi, Abozar & Nemati, Mohammad & Ghasemi, Amir & Koohshekan, Omid, 2020. "The economic evaluation of establishing a plant for producing biodiesel from edible oil wastes in oil-rich countries: Case study Iran," Energy, Elsevier, vol. 213(C).
    19. Kumeka, Terver Theophilus & Uzoma-Nwosu, Damian Chidozie & David-Wayas, Maria Onyinye, 2022. "The effects of COVID-19 on the interrelationship among oil prices, stock prices and exchange rates in selected oil exporting economies," Resources Policy, Elsevier, vol. 77(C).
    20. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:7:p:2896-:d:1367457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.