IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i24p11069-d1545792.html
   My bibliography  Save this article

Toward Low-Carbon Agriculture: Factor Decomposition and Decoupling Analysis of Agricultural Carbon Emissions in Northeast China

Author

Listed:
  • Donghui Lv

    (School of Finance, Jilin University of Finance and Economics, Changchun 130117, China)

  • Yu Zhang

    (School of Geographical Sciences, Northeast Normal University, Changchun 130024, China)

Abstract

Chemical fertilizer inputs in China peaked in 2015; however, agricultural carbon emissions continue to rise, and the effect of chemical fertilizer inputs on agricultural carbon emissions remains unclear in this context. This paper aims to offer a useful policy reference for low-carbon agriculture based on agrochemical inputs. Taking northeast China as an example, we incorporated chemical fertilizers as a factor in the generalized Divisia index model (GDIM) and conducted a decoupling analysis using a decoupling effort index (DEI) on data from 2000 to 2020. The factor decomposition results indicate that the chemical fertilizer input scale served as a driving factor with a declining trend, and carbon productivity from chemical fertilizer shifted from an inhibiting effect to a driving effect on agricultural carbon emissions. The results of integrating the GDIM with a DEI indicate that reducing chemical fertilizer inputs and exerting the inhibiting effect of carbon productivity from chemical fertilizer both contribute to effective decoupling.

Suggested Citation

  • Donghui Lv & Yu Zhang, 2024. "Toward Low-Carbon Agriculture: Factor Decomposition and Decoupling Analysis of Agricultural Carbon Emissions in Northeast China," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11069-:d:1545792
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/24/11069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/24/11069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Shahbaz & Smile Dube & Ilhan Ozturk & Abdul Jalil, 2015. "Testing the Environmental Kuznets Curve Hypothesis in Portugal," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 475-481.
    2. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    3. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    4. Zheng, Linyi, 2024. "Big hands holding small hands: The role of new agricultural operating entities in farmland abandonment," Food Policy, Elsevier, vol. 123(C).
    5. Donghui Lv & Huiying Gao & Yu Zhang, 2021. "Rural Economic Development Based on Shift-Share Analysis in a Developing Country: A Case Study in Heilongjiang Province, China," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    6. Diakoulaki, D. & Mandaraka, M., 2007. "Decomposition analysis for assessing the progress in decoupling industrial growth from CO2 emissions in the EU manufacturing sector," Energy Economics, Elsevier, vol. 29(4), pages 636-664, July.
    7. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    8. Karmellos, M. & Kosmadakis, V. & Dimas, P. & Tsakanikas, A. & Fylaktos, N. & Taliotis, C. & Zachariadis, T., 2021. "A decomposition and decoupling analysis of carbon dioxide emissions from electricity generation: Evidence from the EU-27 and the UK," Energy, Elsevier, vol. 231(C).
    9. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    10. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    11. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    12. Lisa A. Schulte & Bruce E. Dale & Stefano Bozzetto & Matt Liebman & Glaucia M. Souza & Nick Haddad & Tom L. Richard & Bruno Basso & Robert C. Brown & Jorge A. Hilbert & J. Gordon Arbuckle, 2022. "Meeting global challenges with regenerative agriculture producing food and energy," Nature Sustainability, Nature, vol. 5(5), pages 384-388, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Jian & Yang, Qingshan & Ou, Suhua & Liu, Jie, 2022. "Factor decomposition and the decoupling effect of carbon emissions in China's manufacturing high-emission subsectors," Energy, Elsevier, vol. 248(C).
    2. Jamal Sekali & Mohamed Bouzahzah, 2019. "Financial Development and Environmental Quality: Empirical Evidence for Morocco," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 67-74.
    3. Zhang, Qianxue & Liao, Hua & Hao, Yu, 2018. "Does one path fit all? An empirical study on the relationship between energy consumption and economic development for individual Chinese provinces," Energy, Elsevier, vol. 150(C), pages 527-543.
    4. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    5. Shao, Shuai & Yang, Lili & Yu, Mingbo & Yu, Mingliang, 2011. "Estimation, characteristics, and determinants of energy-related industrial CO2 emissions in Shanghai (China), 1994-2009," Energy Policy, Elsevier, vol. 39(10), pages 6476-6494, October.
    6. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    7. Cerdeira Bento, João Paulo, 2014. "The determinants of CO2 emissions: empirical evidence from Italy," MPRA Paper 59166, University Library of Munich, Germany.
    8. Donghui Lv & Ruru Wang & Yu Zhang, 2021. "Sustainability Assessment Based on Integrating EKC with Decoupling: Empirical Evidence from China," Sustainability, MDPI, vol. 13(2), pages 1-22, January.
    9. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    10. Chen, Jiamin & Chen, Yuwei, 2024. "Does natural resources rent promote carbon neutrality: The role of digital finance," Resources Policy, Elsevier, vol. 92(C).
    11. Jian Liu & Qingshan Yang & Yu Zhang & Wen Sun & Yiming Xu, 2019. "Analysis of CO 2 Emissions in China’s Manufacturing Industry Based on Extended Logarithmic Mean Division Index Decomposition," Sustainability, MDPI, vol. 11(1), pages 1-28, January.
    12. Muhammad, Anees & Ishfaq, Ahmed, 2011. "Industrial development, agricultural growth, urbanization and environmental Kuznets curve in Pakistan," MPRA Paper 33469, University Library of Munich, Germany.
    13. Jianli Sui & Wenqiang Lv, 2021. "Crop Production and Agricultural Carbon Emissions: Relationship Diagnosis and Decomposition Analysis," IJERPH, MDPI, vol. 18(15), pages 1-18, August.
    14. Lu, Qinli & Yang, Hong & Huang, Xianjin & Chuai, Xiaowei & Wu, Changyan, 2015. "Multi-sectoral decomposition in decoupling industrial growth from carbon emissions in the developed Jiangsu Province, China," Energy, Elsevier, vol. 82(C), pages 414-425.
    15. Hussain, Muzzammil & Wang, Wei & Wang, Yiwen, 2022. "Natural resources, consumer prices and financial development in China: Measures to control carbon emissions and ecological footprints," Resources Policy, Elsevier, vol. 78(C).
    16. Charfeddine, Lanouar & Ben Khediri, Karim, 2016. "Financial development and environmental quality in UAE: Cointegration with structural breaks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1322-1335.
    17. Letisha S. Fong & Alberto Salvo & David Taylor, 2020. "Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1441-1456, September.
    18. Jiasha Fu & Fan Wang & Jin Guo, 2024. "Decoupling Economic Growth from Carbon Emissions in the Yangtze River Economic Belt of China: From the Coordinated Regional Development Perspective," Sustainability, MDPI, vol. 16(6), pages 1-24, March.
    19. Shahbaz, Muhammad & Mutascu, Mihai & Azim, Parvez, 2013. "Environmental Kuznets curve in Romania and the role of energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 165-173.
    20. Fırat Emir & Festus Victor Bekun, 2019. "Energy intensity, carbon emissions, renewable energy, and economic growth nexus: New insights from Romania," Energy & Environment, , vol. 30(3), pages 427-443, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:24:p:11069-:d:1545792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.