IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6646-d1449323.html
   My bibliography  Save this article

Behavioral Efficiency and Residential Electricity Consumption: A Microdata Study

Author

Listed:
  • Thomas Weyman-Jones

    (Loughborough Business School, Loughborough University, Loughborough LE11 3TU, UK)

  • Júlia Mendonça Boucinha

    (Independent Researcher, 1400-126 Lisboa, Portugal)

Abstract

Sustainability requires that policy makers be able to use market signals to implement energy and environmental policy and that energy consumers respond rationally to these signals. Therefore, it is essential to understand how consumers’ responses to market signals are formed. We propose a new model to measure behavioral efficiency in residential electricity consumption derived from the individual householder indirect utility function. This leads to a pair of simultaneous stochastic demand frontiers for electricity consumption (kWh) and power demand (kVA). Each is a function of power demand (standing) charges and energy demand (running) charges together with the net income after demand charges, the stock of appliances and household characteristics. We estimate the model using two samples of household responses, each of which represents around one percent of the total national population available, and we also pool these samples using pseudo-panel data procedures. We demonstrate how the resulting elasticity and efficiency estimates are related to the theory of behavioral agents from recent developments in behavioral economics. These developments also use the individual indirect utility function to derive propositions based on internality and hyperbolic discounting. The econometric estimates permit the calibration of the individual welfare effects of policy initiatives using carbon tax and price incentives with behavioral agents.

Suggested Citation

  • Thomas Weyman-Jones & Júlia Mendonça Boucinha, 2024. "Behavioral Efficiency and Residential Electricity Consumption: A Microdata Study," Sustainability, MDPI, vol. 16(15), pages 1-34, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6646-:d:1449323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6646/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6646/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Filippini & Lester C. Hunt, 2011. "Energy Demand and Energy Efficiency in the OECD Countries: A Stochastic Demand Frontier Approach," The Energy Journal, , vol. 32(2), pages 59-80, April.
    2. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    3. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    4. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    5. Kumbhakar,Subal C. & Wang,Hung-Jen & Horncastle,Alan P., 2015. "A Practitioner's Guide to Stochastic Frontier Analysis Using Stata," Cambridge Books, Cambridge University Press, number 9781107029514, January.
    6. Fan, Yanqin & Li, Qi & Weersink, Alfons, 1996. "Semiparametric Estimation of Stochastic Production Frontier Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 460-468, October.
    7. Mustafa U. Karakaplan & Levent Kutlu, 2017. "Endogeneity in panel stochastic frontier models: an application to the Japanese cotton spinning industry," Applied Economics, Taylor & Francis Journals, vol. 49(59), pages 5935-5939, December.
    8. Kees Jan Van Garderen & Chandra Shah, 2002. "Exact interpretation of dummy variables in semilogarithmic equations," Econometrics Journal, Royal Economic Society, vol. 5(1), pages 149-159, June.
    9. Emmanuel Farhi & Xavier Gabaix, 2020. "Optimal Taxation with Behavioral Agents," American Economic Review, American Economic Association, vol. 110(1), pages 298-336, January.
    10. Kennedy, Peter E, 1981. "Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations [The Interpretation of Dummy Variables in Semilogarithmic Equations]," American Economic Review, American Economic Association, vol. 71(4), pages 801-801, September.
    11. Gruber, Jonathan & Koszegi, Botond, 2004. "Tax incidence when individuals are time-inconsistent: the case of cigarette excise taxes," Journal of Public Economics, Elsevier, vol. 88(9-10), pages 1959-1987, August.
    12. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    13. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    14. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakaya, Etem & Alataş, Sedat & Erkara, Elif & Mert, Betül & Akdoğan, Tuğba & Hiçyılmaz, Burcu, 2024. "The rebound effect of material and energy efficiency for the EU and its major trading partners," Energy Economics, Elsevier, vol. 134(C).
    2. Otsuka, Akihiro, 2023. "Industrial electricity consumption efficiency and energy policy in Japan," Utilities Policy, Elsevier, vol. 81(C).
    3. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
    4. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2021. "What do we know from the vast literature on efficiency and productivity in healthcare? A Systematic Review and Bibliometric Analysis," CEPA Working Papers Series WP092021, School of Economics, University of Queensland, Australia.
    5. Bao Hoang Nguyen & Robin C. Sickles & Valentin Zelenyuk, 2022. "Efficiency Analysis with Stochastic Frontier Models Using Popular Statistical Softwares," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 129-171, Springer.
    6. Mark A. Andor & David H. Bernstein & Stephan Sommer, 2021. "Determining the efficiency of residential electricity consumption," Empirical Economics, Springer, vol. 60(6), pages 2897-2923, June.
    7. Adha, Rishan & Hong, Cheng-Yih & Firmansyah, M. & Paranata, Ade, 2021. "Rebound effect with energy efficiency determinants: a two-stage analysis of residential electricity consumption in Indonesia," MPRA Paper 110444, University Library of Munich, Germany.
    8. Morakinyo O. Adetutu, Anthony J. Glass, and Thomas G. Weyman-Jones, 2016. "Economy-wide Estimates of Rebound Effects: Evidence from Panel Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    9. Mark Andor & Frederik Hesse, "undated". "The StoNED age: The Departure Into a New Era of Efficiency Analysis? An MC study Comparing StoNED and the "Oldies" (SFA and DEA)," Working Papers 201285, Institute of Spatial and Housing Economics, Munster Universitary.
    10. Romero-Jordán, Desiderio & del Río, Pablo, 2022. "Analysing the drivers of the efficiency of households in electricity consumption," Energy Policy, Elsevier, vol. 164(C).
    11. Danuse Nerudova & Marian Dobranschi, 2019. "Alternative method to measure the VAT gap in the EU: Stochastic tax frontier model approach," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-38, January.
    12. Mark Andor & Frederik Hesse, 2014. "The StoNED age: the departure into a new era of efficiency analysis? A monte carlo comparison of StoNED and the “oldies” (SFA and DEA)," Journal of Productivity Analysis, Springer, vol. 41(1), pages 85-109, February.
    13. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    14. Twerefou, Daniel Kwabena & Abeney, Jacob Opantu, 2020. "Efficiency of household electricity consumption in Ghana," Energy Policy, Elsevier, vol. 144(C).
    15. Stefan Seifert, 2016. "Semi-Parametric Measures of Scale Characteristics of German Natural Gas-Fired Electricity Generation," Discussion Papers of DIW Berlin 1571, DIW Berlin, German Institute for Economic Research.
    16. Manuel Llorca & José Baños & José Somoza & Pelayo Arbués, 2017. "A Stochastic Frontier Analysis Approach for Estimating Energy Demand and Efficiency in the Transport Sector of Latin America and the Caribbean," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    17. Taining Wang & Jinjing Tian & Feng Yao, 2021. "Does high debt ratio influence Chinese firms’ performance? A semiparametric stochastic frontier approach with zero inefficiency," Empirical Economics, Springer, vol. 61(2), pages 587-636, August.
    18. Lee , Woong, 2015. "Estimating Regional Matching Efficiency in the Indian Labor Market: State-Level Panel Data for 1999-2013," Working Papers 15-3, Korea Institute for International Economic Policy.
    19. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    20. Llorca, Manuel & Jamasb, Tooraj, 2017. "Energy efficiency and rebound effect in European road freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 98-110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6646-:d:1449323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.