IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i13p5719-d1428857.html
   My bibliography  Save this article

Spatiotemporal Population Projections within the Framework of Shared Socioeconomic Pathways: A Seoul, Korea, Case Study

Author

Listed:
  • Youngeun Kang

    (Department of Landscape Architecture, Gyeongsang National University, Jinju 52725, Republic of Korea)

  • Gyoungju Lee

    (Department of Urban and Transportation Engineering, Korea National University of Transportation, Chungju 27469, Republic of Korea)

Abstract

Despite evidence of the growing importance of shared socioeconomic pathways (SSPs) in addressing climate change globally, there is a gap in research concerning the prediction of regional SSP populations. This study aims to project Seoul’s population from 2020 to 2100 under various SSPs and to interpolate this population through a spatiotemporal approach. Utilizing data from the Korea National Statistical Office and international socioeconomic scenario data, we applied a regression model for predicting population growth. This was supplemented with population projections derived from cohort modeling to enhance accuracy. Population allocation within each grid was determined based on the total floor area of residential buildings. To reflect shifting population demands, we adjusted long-term population trends using observed building completion dates from 2010 to 2020. By 2100, SSP3 is projected to have Seoul’s lowest population at 2,344,075, while SSP5 is expected to have the highest at 5,683,042. We conducted an analysis of grid population characteristics based on SSPs and verified the accuracy of our findings. Our results underscore the importance of refined population estimates for sustainable urban planning, indicating the potential for extending grid population estimates to other regions.

Suggested Citation

  • Youngeun Kang & Gyoungju Lee, 2024. "Spatiotemporal Population Projections within the Framework of Shared Socioeconomic Pathways: A Seoul, Korea, Case Study," Sustainability, MDPI, vol. 16(13), pages 1-21, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5719-:d:1428857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/13/5719/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/13/5719/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kooi, B.W. & Kooijman, S.A.L.M., 2020. "A cohort projection method to follow deb-structured populations with periodic, synchronized and iteroparous reproduction," Ecological Modelling, Elsevier, vol. 436(C).
    2. Brian C. O’Neill & Timothy R. Carter & Kristie Ebi & Paula A. Harrison & Eric Kemp-Benedict & Kasper Kok & Elmar Kriegler & Benjamin L. Preston & Keywan Riahi & Jana Sillmann & Bas J. Ruijven & Detlef, 2021. "Publisher Correction: Achievements and needs for the climate change scenario framework," Nature Climate Change, Nature, vol. 11(3), pages 274-274, March.
    3. Goplerud, Max, 2016. "Crossing the Boundaries: An Implementation of Two Methods for Projecting Data across Boundary Changes," Political Analysis, Cambridge University Press, vol. 24(1), pages 121-129, January.
    4. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    5. Chen, Y.-H. Henry & Paltsev, Sergey & Reilly, John M. & Morris, Jennifer F. & Babiker, Mustafa H., 2016. "Long-term economic modeling for climate change assessment," Economic Modelling, Elsevier, vol. 52(PB), pages 867-883.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Garrido & Xavier Milhaud & Anani Olympio & Max Popp, 2024. "Climate Risk and its Impact on Insurance [Risque climatique et impact en assurance]," Post-Print hal-04684634, HAL.
    2. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    3. Winchester, Niven & Reilly, John M., 2020. "The economic and emissions benefits of engineered wood products in a low-carbon future," Energy Economics, Elsevier, vol. 85(C).
    4. Biavaschi, Costanza & Facchini, Giovanni, 2020. "Immigrant Franchise and Immigration Policy: Evidence from the Progressive Era," IZA Discussion Papers 13195, Institute of Labor Economics (IZA).
    5. repec:hum:wpaper:sfb649dp2009-015 is not listed on IDEAS
    6. Li, Johnny Siu-Hang, 2010. "Pricing longevity risk with the parametric bootstrap: A maximum entropy approach," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 176-186, October.
    7. Paltsev, Sergey & Morris, Jennifer & Kheshgi, Haroon & Herzog, Howard, 2021. "Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation," Applied Energy, Elsevier, vol. 300(C).
    8. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    9. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    10. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    11. Lu, Yongquan & Liu, Guilin & Xian, Yuyang & Tang, Jiaqi & Zhong, Liming, 2024. "Climate change brings both opportunities and challenges to rural revitalization in China: Evidence from apple geographical indication predictions," Agricultural Systems, Elsevier, vol. 216(C).
    12. Nabernegg, Stefan & Bednar-Friedl, Birgit & Muñoz, Pablo & Titz, Michaela & Vogel, Johanna, 2019. "National Policies for Global Emission Reductions: Effectiveness of Carbon Emission Reductions in International Supply Chains," Ecological Economics, Elsevier, vol. 158(C), pages 146-157.
    13. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    14. Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
    15. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    16. Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
    17. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    18. Youtang Zhang & Hagos Mesfin Berhe, 2022. "The Impact of Green Investment and Green Marketing on Business Performance: The Mediation Role of Corporate Social Responsibility in Ethiopia’s Chinese Textile Companies," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    19. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    20. Marie-Pier Bergeron-Boucher & James E. Oeppen & Vladimir Canudas-Romo & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    21. S. Haberman & A. E. Renshaw, 2009. "Measurement of Longevity Risk Using Bootstrapping for Lee–Carter and Generalised Linear Poisson Models of Mortality," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 443-461, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:13:p:5719-:d:1428857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.