IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i11p4705-d1406698.html
   My bibliography  Save this article

Strategies and Tools for Small- and Medium-Sized Enterprises (SMEs) to Move toward Green Operations: The Case of the Taiwan Metal Industry

Author

Listed:
  • Chun-Hung Cheng

    (Program in Electro-Optical and Materials Science, Department of Electro-Optical Engineering, National Formosa University, Huwei 632, Taiwan)

  • Bau-Jen Tang

    (Industrial Technology Research Institute, Chutung 310, Taiwan)

  • Yea-Rong Cheng

    (Department of Special Education, National University of Tainan, Tainan 700, Taiwan)

Abstract

Net-zero carbon reduction has become a global supply chain development trend, and the EU has established CBAM regulations. Industries that fail to effectively reduce carbon emissions will face operational challenges under these regulations. For SMEs, carbon reduction is crucial for sustainable operations. To address this challenge, governments worldwide are formulating relevant policies and investing resources to help SMEs enhance their competitiveness. In Taiwan, the metal industry has an export ratio exceeding 45%, making it a significant global production base for metal products. This study conducted a green operational transformation survey on 230 SMEs in Taiwan’s metal industry. The Taiwanese government has devised a comprehensive carbon reduction approach for the metal industry, which includes environmental facilities, digital technology introduction, process and production technology improvement, resource recycling, and energy conversion as strategies and tools for promoting carbon reduction. According to this study, the aforementioned five promotion strategies have become essential tools for SMEs in their carbon reduction efforts. This study utilized a one-way ANOVA, Pearson correlation analysis, and simple regression analysis, all of which demonstrated significant correlations among these tools. These findings can serve as a reference for other partner countries, accelerating the global industry’s transition toward green operations.

Suggested Citation

  • Chun-Hung Cheng & Bau-Jen Tang & Yea-Rong Cheng, 2024. "Strategies and Tools for Small- and Medium-Sized Enterprises (SMEs) to Move toward Green Operations: The Case of the Taiwan Metal Industry," Sustainability, MDPI, vol. 16(11), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4705-:d:1406698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/11/4705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/11/4705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onuma, Hiroki & Matsumoto, Shigeru & Arimura, Toshi H., 2020. "How much household electricity consumption is actually saved by replacement with Light-Emitting Diodes (LEDs)?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 224-238.
    2. Fuchs, Heidi & Aghajanzadeh, Arian & Therkelsen, Peter, 2020. "Identification of drivers, benefits, and challenges of ISO 50001 through case study content analysis," Energy Policy, Elsevier, vol. 142(C).
    3. Vittorini, Diego & Cipollone, Roberto, 2016. "Energy saving potential in existing industrial compressors," Energy, Elsevier, vol. 102(C), pages 502-515.
    4. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    5. Nwachukwu, Chinedu Maureen & Wang, Chuan & Wetterlund, Elisabeth, 2021. "Exploring the role of forest biomass in abating fossil CO2 emissions in the iron and steel industry – The case of Sweden," Applied Energy, Elsevier, vol. 288(C).
    6. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    7. Lenox, Carol & Kaplan, P. Ozge, 2016. "Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions," Energy Economics, Elsevier, vol. 60(C), pages 460-468.
    8. Rocío Redondo Alamillos & Frédéric de Mariz, 2022. "How Can European Regulation on ESG Impact Business Globally?," JRFM, MDPI, vol. 15(7), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingyue Wang & Rui Kong & Jianfu Luo, 2025. "Green Product Innovation Coordination in Aluminum Building Material Supply Chains with Innovation Capability Heterogeneity: A Biform Game-Theoretic Approach," Sustainability, MDPI, vol. 17(16), pages 1-52, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    2. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    3. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    4. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    5. Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).
    6. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    7. Komerath, Narayanan M. & Deepak, Ravi, 2023. "A reversible mid-stratospheric architecture to reduce insolation," Applied Energy, Elsevier, vol. 348(C).
    8. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    9. Edna Aparecida Greggio Possebon & Felippe Aparecido Cippiciani & José Roberto Ferreira Savoia & Frédéric de Mariz, 2024. "ESG Scores and Performance in Brazilian Public Companies," Sustainability, MDPI, vol. 16(13), pages 1-18, July.
    10. Salvatore Digiesi & Giovanni Mummolo & Micaela Vitti, 2022. "Minimum Emissions Configuration of a Green Energy–Steel System: An Analytical Model," Energies, MDPI, vol. 15(9), pages 1-21, May.
    11. Meron Tesfamichael & Edson Twinomujuni & Mbeo Ogeya & Silver Ssebagala & Yacob Mulugetta, 2022. "Barriers to the institutionalization of industrial energy efficiency in Africa: A case study from Uganda," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    12. Stavros Garefalakis & Erasmia Angelaki & Kostantinos Spinthiropoulos & George Tsamis & Alexandros Garefalakis, 2025. "The Implementation of ESG Indicators in the Balanced Scorecard—Case Study of LGOs," Risks, MDPI, vol. 13(8), pages 1-35, August.
    13. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    14. Maria Mitroulia & Evangelos Chytis & Thomas Kitsantas & Michalis Skordoulis & Petros Kalantonis, 2025. "ESG Strategy and Tax Avoidance: Insights from a Meta-Regression Analysis," JRFM, MDPI, vol. 18(9), pages 1-34, September.
    15. Qian Zhou & Helmut Yabar & Takeshi Mizunoya & Yoshiro Higano, 2017. "Evaluation of Integrated Air Pollution and Climate Change Policies: Case Study in the Thermal Power Sector in Chongqing City, China," Sustainability, MDPI, vol. 9(10), pages 1-17, September.
    16. Zhuo, Yuting & Shen, Yansong, 2020. "Three-dimensional transient modelling of coal and coke co-combustion in the dynamic raceway of ironmaking blast furnaces," Applied Energy, Elsevier, vol. 261(C).
    17. Hernan Hernandez-Herrera & Jorge I. Silva-Ortega & Vicente Leonel Mart nez Diaz & Zaid Garc a Sanchez & Gilberto Gonz lez Garc a & Sandra M. Escorcia & Habid E. Zarate, 2020. "Energy Savings Measures in Compressed Air Systems," International Journal of Energy Economics and Policy, Econjournals, vol. 10(3), pages 414-422.
    18. Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
    19. Michel Feidt & Monica Costea & Renaud Feidt & Quentin Danel & Christelle Périlhon, 2020. "New Criteria to Characterize the Waste Heat Recovery," Energies, MDPI, vol. 13(4), pages 1-15, February.
    20. Marcin Sajdak & Roksana Muzyka & Grzegorz Gałko & Ewelina Ksepko & Monika Zajemska & Szymon Sobek & Dariusz Tercki, 2022. "Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis," Energies, MDPI, vol. 16(1), pages 1-30, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:11:p:4705-:d:1406698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.