IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v60y2016icp460-468.html
   My bibliography  Save this article

Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions

Author

Listed:
  • Lenox, Carol
  • Kaplan, P. Ozge

Abstract

With advances in natural gas extraction technologies, there is an increase in the availability of domestic natural gas, and natural gas is gaining a larger share of use as a fuel in electricity production. At the power plant, natural gas is a cleaner burning fuel than coal, but uncertainties exist in the amount of methane leakage occurring upstream in the extraction and production of natural gas. At higher leakage levels, the additional methane emissions could offset the carbon dioxide emissions reduction benefit of switching from coal to natural gas. This analysis uses the MARKAL linear optimization model to compare the carbon emissions profiles and system-wide global warming potential of the U.S. energy system over a series of model runs in which the power sector is required to meet a specific carbon dioxide reduction target across a number of scenarios in which the availability of natural gas changes. Scenarios are run with carbon dioxide emissions and a range of upstream methane emission leakage rates from natural gas production along with upstream methane and carbon dioxide emissions associated with production of coal and oil. While the system carbon dioxide emissions are reduced in most scenarios, total carbon dioxide equivalent emissions show an increase in scenarios in which natural gas prices remain low and, simultaneously, methane emissions from natural gas production are higher.

Suggested Citation

  • Lenox, Carol & Kaplan, P. Ozge, 2016. "Role of natural gas in meeting an electric sector emissions reduction strategy and effects on greenhouse gas emissions," Energy Economics, Elsevier, vol. 60(C), pages 460-468.
  • Handle: RePEc:eee:eneeco:v:60:y:2016:i:c:p:460-468
    DOI: 10.1016/j.eneco.2016.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831630144X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2016.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haewon McJeon & Jae Edmonds & Nico Bauer & Leon Clarke & Brian Fisher & Brian P. Flannery & Jérôme Hilaire & Volker Krey & Giacomo Marangoni & Raymond Mi & Keywan Riahi & Holger Rogner & Massimo Tavon, 2014. "Limited impact on decadal-scale climate change from increased use of natural gas," Nature, Nature, vol. 514(7523), pages 482-485, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Tianle & Li, Fangmin & Du, Min & Huang, Miao & Li, Yinuo, 2023. "Impacts of alternative energy production innovation on reducing CO2 emissions: Evidence from China," Energy, Elsevier, vol. 268(C).
    2. Kaplan, P. Ozge & Witt, Jonathan W., 2019. "What is the role of distributed energy resources under scenarios of greenhouse gas reductions? A specific focus on combined heat and power systems in the industrial and commercial sectors," Applied Energy, Elsevier, vol. 235(C), pages 83-94.
    3. Mine Isik & P. Ozge Kaplan, 2020. "Understanding Technology, Fuel, Market and Policy Drivers for New York State’s Power Sector Transformation," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    4. Robertas Alzbutas & Tomas Iešmantas, 2022. "Stochastic Simulation of Flow Rate and Power Consumption Considering the Uncertainty of Pipeline Cracking Rate and Time-Dependent Topology of a Natural Gas Transmission Network," Energies, MDPI, vol. 15(13), pages 1-12, June.
    5. Yi Liang & Dongxiao Niu & Weiwei Zhou & Yingying Fan, 2018. "Decomposition Analysis of Carbon Emissions from Energy Consumption in Beijing-Tianjin-Hebei, China: A Weighted-Combination Model Based on Logarithmic Mean Divisia Index and Shapley Value," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    6. Gong, Xiao-Li & Zhao, Min & Wu, Zhuo-Cheng & Jia, Kai-Wen & Xiong, Xiong, 2023. "Research on tail risk contagion in international energy markets—The quantile time-frequency volatility spillover perspective," Energy Economics, Elsevier, vol. 121(C).
    7. Zhai, Chong & Wu, Wei, 2022. "Energetic, exergetic, economic, and environmental analysis of microchannel membrane-based absorption refrigeration system driven by various energy sources," Energy, Elsevier, vol. 239(PB).
    8. Khan, Zeeshan & Malik, Muhammad Yousaf & Latif, Kashmala & Jiao, Zhilun, 2020. "Heterogeneous effect of eco-innovation and human capital on renewable & non-renewable energy consumption: Disaggregate analysis for G-7 countries," Energy, Elsevier, vol. 209(C).
    9. Mahmood, Nasir & Zhao, Yingjun & Lou, Qinqin & Geng, Jinzhou, 2022. "Role of environmental regulations and eco-innovation in energy structure transition for green growth: Evidence from OECD," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Keles, Dogan & Yilmaz, Hasan Ümitcan, 2020. "Decarbonisation through coal phase-out in Germany and Europe — Impact on Emissions, electricity prices and power production," Energy Policy, Elsevier, vol. 141(C).
    11. Chen, Hao & Geng, Hao-Peng & Ling, Hui-Ting & Peng, Song & Li, Nan & Yu, Shiwei & Wei, Yi-Ming, 2020. "Modeling the coal-to-gas switch potentials in the power sector: A case study of China," Energy, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John D. Graham & John A. Rupp & Olga Schenk, 2015. "Unconventional Gas Development in the USA: Exploring the Risk Perception Issues," Risk Analysis, John Wiley & Sons, vol. 35(10), pages 1770-1788, October.
    2. Tony Addison, 2018. "Climate change and the extractives sector," WIDER Working Paper Series 84, World Institute for Development Economic Research (UNU-WIDER).
    3. Healey, Stephen & Jaccard, Mark, 2016. "Abundant low-cost natural gas and deep GHG emissions reductions for the United States," Energy Policy, Elsevier, vol. 98(C), pages 241-253.
    4. Pan, Xunzhang & Ma, Xueqing & Zhang, Yanru & Shao, Tianming & Peng, Tianduo & Li, Xiang & Wang, Lining & Chen, Wenying, 2023. "Implications of carbon neutrality for power sector investments and stranded coal assets in China," Energy Economics, Elsevier, vol. 121(C).
    5. Woollacott, Jared, 2020. "A bridge too far? The role of natural gas electricity generation in US climate policy," Energy Policy, Elsevier, vol. 147(C).
    6. Catherine Hausman & Ryan Kellogg, 2015. "Welfare and Distributional Implications of Shale Gas," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(1 (Spring), pages 71-139.
    7. Hausfather, Zeke, 2015. "Bounding the climate viability of natural gas as a bridge fuel to displace coal," Energy Policy, Elsevier, vol. 86(C), pages 286-294.
    8. Chen, Y.-H. Henry & Reilly, John & Paltsev, Sergey, 2018. "Did the shale gas boom reduce US CO2 emissions?," Conference papers 332954, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Morgan R. Edwards & Jessika E. Trancik, 2022. "Consequences of equivalency metric design for energy transitions and climate change," Climatic Change, Springer, vol. 175(1), pages 1-27, November.
    10. John E. T. Bistline & David T. Young, 2022. "The role of natural gas in reaching net-zero emissions in the electric sector," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Gokul Iyer & Yang Ou & James Edmonds & Allen A. Fawcett & Nathan Hultman & James McFarland & Jay Fuhrman & Stephanie Waldhoff & Haewon McJeon, 2022. "Ratcheting of climate pledges needed to limit peak global warming," Nature Climate Change, Nature, vol. 12(12), pages 1129-1135, December.
    12. Bistline, John E., 2015. "Electric sector capacity planning under uncertainty: Climate policy and natural gas in the US," Energy Economics, Elsevier, vol. 51(C), pages 236-251.
    13. Tony Addison, 2018. "Climate change and the extractives sector," WIDER Working Paper Series wp-2018-84, World Institute for Development Economic Research (UNU-WIDER).
    14. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    15. Mei, Yingdan & Gao, Li & Zhang, Wendong & Yang, Feng-An, 2021. "Do homeowners benefit when coal-fired power plants switch to natural gas? Evidence from Beijing, China," Journal of Environmental Economics and Management, Elsevier, vol. 110(C).
    16. Luderer, Gunnar & Pietzcker, Robert C. & Carrara, Samuel & de Boer, Harmen Sytze & Fujimori, Shinichiro & Johnson, Nils & Mima, Silvana & Arent, Douglas, 2017. "Assessment of wind and solar power in global low-carbon energy scenarios: An introduction," Energy Economics, Elsevier, vol. 64(C), pages 542-551.
    17. Forouli, Aikaterini & Doukas, Haris & Nikas, Alexandros & Sampedro, Jon & Van de Ven, Dirk-Jan, 2019. "Identifying optimal technological portfolios for European power generation towards climate change mitigation: A robust portfolio analysis approach," Utilities Policy, Elsevier, vol. 57(C), pages 33-42.
    18. Chen Zhao & Jiaxuan Zhu & Zhiyao Xu & Yixuan Wang & Bin Liu & Lu Yuan & Xiaowen Wang & Jiali Xiong & Yiming Zhao, 2022. "The Effect of Air Pollution Control Auditing on Reducing Carbon Emissions: Evidence from China," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    19. Huntington, Hillard G., 2016. "Introduction: North American natural gas markets in transition," Energy Economics, Elsevier, vol. 60(C), pages 401-404.

    More about this item

    Keywords

    Energy system; Scenario analysis; Carbon emissions reductions; Methane; Natural gas;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:60:y:2016:i:c:p:460-468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.