IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919316095.html
   My bibliography  Save this article

A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers

Author

Listed:
  • Ghoreishi-Madiseh, Seyed Ali
  • Kalantari, Hosein
  • Kuyuk, Ali Fahrettin
  • Sasmito, Agus P.

Abstract

Mine air conditioning is a common practice where liners and other shaft units should be protected against freezing temperatures in cold regions. In conventional mine intake air conditioning applications, heating is usually performed with natural gas burners, accounting intense energy consumption and emissions. This fossil fuel dependency issue can be effectively mitigated with a heat recovery and reutilization technique called mine exhaust heat recovery. Mine exhaust heat recovery systems can ensure large savings with minimum fossil burning at relatively lower operating costs. Present paper investigates the applicability of a novel numerical heat transfer model to assess the performance of mine exhaust recovery systems with comparably higher precision. Unlike other work done in the field, this work also considers the coupling effect between the heat exchangers involved. Accordingly, the operational significance and the impact of thermal coupling in the model is highlighted in detail with an emphasis on the project financial feasibility. Furthermore, a parametric study is also presented identifying the impact of different parameters i.e. heat exchanger effectiveness and airflow rate on savings for a real-life Canadian underground mine example.

Suggested Citation

  • Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316095
    DOI: 10.1016/j.apenergy.2019.113922
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113922?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P. & Amiri, Leyla, 2017. "Performance evaluation of large scale rock-pit seasonal thermal energy storage for application in underground mine ventilation," Applied Energy, Elsevier, vol. 185(P2), pages 1940-1947.
    2. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    3. Amiri, Leyla & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2018. "Effect of buoyancy-driven natural convection in a rock-pit mine air preconditioning system acting as a large-scale thermal energy storage mass," Applied Energy, Elsevier, vol. 221(C), pages 268-279.
    4. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    5. Chatterjee, Arnab & Zhang, Lijun & Xia, Xiaohua, 2015. "Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff," Applied Energy, Elsevier, vol. 146(C), pages 65-73.
    6. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baidya, Durjoy & de Brito, Marco Antonio Rodrigues & Ghoreishi-Madiseh, Seyed Ali, 2020. "Techno-economic feasibility investigation of incorporating an energy storage with an exhaust heat recovery system for underground mines in cold climatic regions," Applied Energy, Elsevier, vol. 273(C).
    2. Kalantari, Hosein & Sasmito, Agus P. & Ghoreishi-Madiseh, Seyed Ali, 2021. "An overview of directions for decarbonization of energy systems in cold climate remote mines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Huang, Hongxu & Liang, Rui & Lv, Chaoxian & Lu, Mengtian & Gong, Dunwei & Yin, Shulin, 2021. "Two-stage robust stochastic scheduling for energy recovery in coal mine integrated energy system," Applied Energy, Elsevier, vol. 290(C).
    4. Li, Wuyan & Li, Xianting & Gao, Yijun & Shi, Wenxing, 2022. "Thermo-economic evaluation for energy retrofitting building ventilation system based on run-around heat recovery system," Energy, Elsevier, vol. 260(C).
    5. Hosein Kalantari & Seyed Ali Ghoreishi-Madiseh & Agus P. Sasmito, 2020. "Hybrid Renewable Hydrogen Energy Solution for Application in Remote Mines," Energies, MDPI, vol. 13(23), pages 1-22, December.
    6. Kalantari, Hosein & Ali Ghoreishi-Madiseh, Seyed, 2023. "Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalantari, Hosein & Ali Ghoreishi-Madiseh, Seyed, 2023. "Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems," Applied Energy, Elsevier, vol. 334(C).
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    4. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    5. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    6. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    7. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    8. Ahmed, Omer Khalil & Mohammed, Zala Aziz, 2017. "Influence of porous media on the performance of hybrid PV/Thermal collector," Renewable Energy, Elsevier, vol. 112(C), pages 378-387.
    9. Abuşka, Mesut & Şevik, Seyfi & Kayapunar, Arif, 2019. "Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder," Renewable Energy, Elsevier, vol. 143(C), pages 34-46.
    10. Junqiao Li & Yucheng Li & Wei Zhang & Jinyang Dong & Yunan Cui, 2022. "Multi-Objective Intelligent Decision and Linkage Control Algorithm for Mine Ventilation," Energies, MDPI, vol. 15(21), pages 1-17, October.
    11. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    12. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    13. Amiri, Leyla & de Brito, Marco Antonio Rodrigues & Baidya, Durjoy & Kuyuk, Ali Fahrettin & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2019. "Numerical investigation of rock-pile based waste heat storage for remote communities in cold climates," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Yonggang Gou & Xiuzhi Shi & Jian Zhou & Xianyang Qiu & Xin Chen, 2017. "Characterization and Effects of the Shock Losses in a Parallel Fan Station in the Underground Mine," Energies, MDPI, vol. 10(6), pages 1-20, June.
    15. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Kusun, Barış & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Enhancing the performance of an unglazed solar air collector using mesh tubes and Fe3O4 nano-enhanced absorber coating," Energy, Elsevier, vol. 277(C).
    16. Amiri, Leyla & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2018. "Effect of buoyancy-driven natural convection in a rock-pit mine air preconditioning system acting as a large-scale thermal energy storage mass," Applied Energy, Elsevier, vol. 221(C), pages 268-279.
    17. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    18. Yang, Jing & Zhang, Zhiyong & Hong, Ming & Yang, Mingwan & Chen, Jiayu, 2020. "An oligarchy game model for the mobile waste heat recovery energy supply chain," Energy, Elsevier, vol. 210(C).
    19. Shao, Wei & Cui, Zheng & Chen, Zhao-you & Wang, Jing-chen & Liu, Yu & Ren, Xiao-han & Luo, Feng, 2019. "Experimental and numerical measurements of the channel packed with disordered cement granules regarding the heat transfer performance," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.