IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp34-46.html
   My bibliography  Save this article

Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder

Author

Listed:
  • Abuşka, Mesut
  • Şevik, Seyfi
  • Kayapunar, Arif

Abstract

The purpose of this study is to design new solar air collectors (SACs), to ensure that designed SACs continue to operate in cloudy weather and after sunset and to evaluate in terms of energy and exergy whether the cherry stone/powder will be appropriate to use as a sensible thermal energy storage (STES) material. The experiments were performed for a powdered cherry stones SAC (Type I), a cherry stones SAC (Type II), and a flat plate SAC (Type III) at seven different air mass flow rates (from 0.004 kg/s to 0.048 kg/s). Average thermal efficiency fluctuated between 6.05% and 39.99%, depending on the air mass flow rates under which the experiments were performed and whether the collectors have heat storage. The maximum difference in daily collector efficiency is in Type II, with a slight difference from Type I, which was 18.7% higher than the Type III. The inlet-outlet air temperatures of Type I and Type II were equaled 5 and 4 h after sunset, respectively, compared to the flat plate collector. The exergy efficiency ranged from 1% to 7% during the charging period. As a result, it can be seen that the use of cherry stone/powder as a STES material is promising in contributing to the collector sustainability.

Suggested Citation

  • Abuşka, Mesut & Şevik, Seyfi & Kayapunar, Arif, 2019. "Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder," Renewable Energy, Elsevier, vol. 143(C), pages 34-46.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:34-46
    DOI: 10.1016/j.renene.2019.04.149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119306330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.04.149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    2. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    3. Badescu, Viorel & Abed, Qahtan A. & Ciocanea, Adrian & Soriga, Iuliana, 2017. "The stability of the radiative regime does influence the daily performance of solar air heaters," Renewable Energy, Elsevier, vol. 107(C), pages 403-416.
    4. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    5. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    6. Aboul-Enein, S. & El-Sebaii, A.A. & Ramadan, M.R.I. & El-Gohary, H.G., 2000. "Parametric study of a solar air heater with and without thermal storage for solar drying applications," Renewable Energy, Elsevier, vol. 21(3), pages 505-522.
    7. Becattini, Viola & Motmans, Thomas & Zappone, Alba & Madonna, Claudio & Haselbacher, Andreas & Steinfeld, Aldo, 2017. "Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage," Applied Energy, Elsevier, vol. 203(C), pages 373-389.
    8. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    9. Nallusamy, N. & Sampath, S. & Velraj, R., 2007. "Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources," Renewable Energy, Elsevier, vol. 32(7), pages 1206-1227.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tuncer, Azim Doğuş & Khanlari, Ataollah & Sözen, Adnan & Gürbüz, Emine Yağız & Şirin, Ceylin & Gungor, Afsin, 2020. "Energy-exergy and enviro-economic survey of solar air heaters with various air channel modifications," Renewable Energy, Elsevier, vol. 160(C), pages 67-85.
    2. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    2. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    3. Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
    4. Das, Biplab & Mondol, Jayanta Deb & Negi, Sushant & Smyth, Mervyn & Pugsley, Adrian, 2021. "Experimental performance analysis of a novel sand coated and sand filled polycarbonate sheet based solar air collector," Renewable Energy, Elsevier, vol. 164(C), pages 990-1004.
    5. Ghoreishi-Madiseh, Seyed Ali & Kalantari, Hosein & Kuyuk, Ali Fahrettin & Sasmito, Agus P., 2019. "A new model to analyze performance of mine exhaust heat recovery systems with coupled heat exchangers," Applied Energy, Elsevier, vol. 256(C).
    6. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    7. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    8. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    9. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    10. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    11. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    12. Olivkar, Piyush R. & Katekar, Vikrant P. & Deshmukh, Sandip S. & Palatkar, Sanyukta V., 2022. "Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    13. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    14. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
    15. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    17. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    18. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    19. Ahmed, Omer Khalil & Mohammed, Zala Aziz, 2017. "Influence of porous media on the performance of hybrid PV/Thermal collector," Renewable Energy, Elsevier, vol. 112(C), pages 378-387.
    20. Gilago, Mulatu C. & V.P., Chandramohan, 2022. "Performance parameters evaluation and comparison of passive and active indirect type solar dryers supported by phase change material during drying ivy gourd," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:34-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.