IDEAS home Printed from
   My bibliography  Save this article

An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater


  • Dhiman, Prashant
  • Thakur, N.S.
  • Kumar, Anoop
  • Singh, Satyender


A design of a parallel flow solar air heater with packed material in its upper channel and capable of providing a higher heat flux compared to the conventional non-porous bed double flow systems is presented. An analytical model describing the various temperatures and heat transfer characteristics of such a parallel flow packed bed solar air heater (PFPBSAH) has been developed and employed to study the effects of the mass flow rate and varying porosities of the packed material on its thermal performance. The model employs an iterative solution procedure to solve the governing energy balance equations describing the complex heat and mass exchanges involved. To validate the proposed analytical model, comparisons between theoretical and experimental results showed that good agreement is achieved with reasonable accuracy. Also, PFPBSAH is found to perform more efficiently than the conventional non-porous double flow solar air heaters with 10-20% increase in its thermal efficiency. Furthermore, the effect of the fraction of mass flow rate in the upper or lower flow channel of PFPBSAH device on its performance, has also investigated theoretically. The fraction of the mass flow rate in the respective channels of the PFPBSAH is shown to be dominant parameter in determining the effective thermal efficiency of the heater.

Suggested Citation

  • Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2157-2167

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Yeh, Ho-Ming & Ho, Chii-Dong & Hou, Jun-Ze, 1999. "The improvement of collector efficiency in solar air heaters by simultaneously air flow over and under the absorbing plate," Energy, Elsevier, vol. 24(10), pages 857-871.
    2. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    3. Sodha, M. S. & Bansal, N. K. & Singh, D., 1982. "Analysis of a non-porous double-flow solar air heater," Applied Energy, Elsevier, vol. 12(4), pages 251-258, December.
    4. Cortés, A. & Piacentini, R., 1990. "Improvement of the efficiency of a bare solar collector by means of turbulence promoters," Applied Energy, Elsevier, vol. 36(4), pages 253-261.
    5. Yeh, H.-M. & Ho, C.-D. & Hou, J.-Z., 2002. "Collector efficiency of double-flow solar air heaters with fins attached," Energy, Elsevier, vol. 27(8), pages 715-727.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:eee:renene:v:116:y:2018:i:pa:p:728-740 is not listed on IDEAS
    2. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    3. repec:eee:rensus:v:79:y:2017:i:c:p:779-793 is not listed on IDEAS
    4. Kumar, Anil & Kim, Man-Hoe, 2017. "Solar air-heating system with packed-bed energy-storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 215-227.
    5. repec:eee:renene:v:112:y:2017:i:c:p:378-387 is not listed on IDEAS
    6. Amori, Karima E. & Abd-AlRaheem, Mustafa Adil, 2014. "Field study of various air based photovoltaic/thermal hybrid solar collectors," Renewable Energy, Elsevier, vol. 63(C), pages 402-414.
    7. Sabzpooshani, M. & Mohammadi, K. & Khorasanizadeh, H., 2014. "Exergetic performance evaluation of a single pass baffled solar air heater," Energy, Elsevier, vol. 64(C), pages 697-706.
    8. Yang, Tingting & Athienitis, Andreas K., 2015. "Experimental investigation of a two-inlet air-based building integrated photovoltaic/thermal (BIPV/T) system," Applied Energy, Elsevier, vol. 159(C), pages 70-79.
    9. Lalji, Mukesh Kumar & Sarviya, R.M. & Bhagoria, J.L., 2012. "Exergy evaluation of packed bed solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6262-6267.
    10. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    11. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    12. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:6:p:2157-2167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.