IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p3159-3169.html
   My bibliography  Save this article

Modeling and experimental validation of a humidification–dehumidification desalination unit solar part

Author

Listed:
  • Zhani, K.
  • Ben Bacha, H.
  • Damak, T.

Abstract

This paper presents the modeling and the experimental validation of air and water solar collectors used in humidification–dehumidification (HDH) solar desalination unit. The solar desalination process is currently operating under the climatological conditions of Sfax (34 N, 10 E), Tunisia. To numerically simulate the air and water solar collectors, we have developed dynamic mathematical models of the solar collectors. The resulting distributed parametric systems of equations are transformed into a system of ordinary differential equations (ODEs) using the orthogonal collocation method (OCM). A comparison between numerical and experimental data was conducted. It was found that the two-temperature mathematical model describes more precisely the real behaviour of the water solar collector than the one-temperature mathematical model. It was also shown that the developed mathematical models are able to predict accurately the trends of the thermal characteristic of the water and air solar collectors. As a result, the proposed models can be used to size and test the behaviour of such a type of water and air solar collectors.

Suggested Citation

  • Zhani, K. & Ben Bacha, H. & Damak, T., 2011. "Modeling and experimental validation of a humidification–dehumidification desalination unit solar part," Energy, Elsevier, vol. 36(5), pages 3159-3169.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3159-3169
    DOI: 10.1016/j.energy.2011.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211001617
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    2. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    3. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    4. Narayan, G. Prakash & Sharqawy, Mostafa H. & Summers, Edward K. & Lienhard, John H. & Zubair, Syed M. & Antar, M.A., 2010. "The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1187-1201, May.
    5. Ho, C.D. & Yeh, H.M. & Wang, R.C., 2005. "Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle," Energy, Elsevier, vol. 30(15), pages 2796-2817.
    6. Huang, Jinbao & Pu, Shaoxuan & Gao, Wenfeng & Que, Yi, 2010. "Experimental investigation on thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger," Energy, Elsevier, vol. 35(9), pages 3563-3568.
    7. Ben Bacha, H & Bouzguenda, M & Damak, T & Abid, M.S & Maalej, A.Y, 2000. "A study of a water desalination station using the SMCEC technique: production optimisation," Renewable Energy, Elsevier, vol. 21(3), pages 523-536.
    8. Bacha, H.Ben & Bouzguenda, M. & Abid, M.S. & Maalej, A.y., 1999. "Modelling and simulation of a water desalination station with solar multiple condensation evaporation cycle technique," Renewable Energy, Elsevier, vol. 18(3), pages 349-365.
    9. Aldabbagh, L.B.Y. & Egelioglu, F. & Ilkan, M., 2010. "Single and double pass solar air heaters with wire mesh as packing bed," Energy, Elsevier, vol. 35(9), pages 3783-3787.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Sangkeum & Hong, Junhee & Har, Dongsoo, 2016. "Jointly optimized control for reverse osmosis desalination process with different types of energy resource," Energy, Elsevier, vol. 117(P1), pages 116-130.
    2. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Kandeal, A.W., 2017. "Solar air heaters: Design configurations, improvement methods and applications – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1189-1206.
    3. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    4. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    5. Zhani, Khalifa, 2013. "Solar desalination based on multiple effect humidification process: Thermal performance and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 406-417.
    6. Saidi, Sirine & Ben Radhia, Rym & Nafiri, Naima & Benhamou, Brahim & Jabrallah, Sadok Ben, 2023. "Numerical study and experimental validation of a solar powered humidification-dehumidification desalination system with integrated air and water collectors in the humidifier," Renewable Energy, Elsevier, vol. 206(C), pages 466-480.
    7. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    8. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    9. Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).
    10. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    11. Mohamed, A.S.A. & Ahmed, M. Salem & Shahdy, Abanob.G., 2020. "Theoretical and experimental study of a seawater desalination system based on humidification-dehumidification technique," Renewable Energy, Elsevier, vol. 152(C), pages 823-834.
    12. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Sharshir, S.W., 2014. "Experimental study of a humidification-dehumidification solar technique by natural and forced air circulation," Energy, Elsevier, vol. 68(C), pages 218-228.
    13. Chang, Zehui & Zheng, Hongfei & Yang, Yingjun & Su, Yuehong & Duan, Zhanchun, 2014. "Experimental investigation of a novel multi-effect solar desalination system based on humidification–dehumidification process," Renewable Energy, Elsevier, vol. 69(C), pages 253-259.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Singh, Satyender & Dhiman, Prashant, 2014. "Thermal and thermohydraulic performance evaluation of a novel type double pass packed bed solar air heater under external recycle using an analytical and RSM (response surface methodology) combined ap," Energy, Elsevier, vol. 72(C), pages 344-359.
    4. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    5. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    6. Nowzari, Raheleh & Aldabbagh, L.B.Y. & Egelioglu, F., 2014. "Single and double pass solar air heaters with partially perforated cover and packed mesh," Energy, Elsevier, vol. 73(C), pages 694-702.
    7. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    8. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    9. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    10. Fan, Wenke & Kokogiannakis, Georgios & Ma, Zhenjun, 2019. "Optimisation of life cycle performance of a double-pass photovoltaic thermal-solar air heater with heat pipes," Renewable Energy, Elsevier, vol. 138(C), pages 90-105.
    11. Yu Wang & Mikael Boulic & Robyn Phipps & Manfred Plagmann & Chris Cunningham, 2020. "Experimental Performance of a Solar Air Collector with a Perforated Back Plate in New Zealand," Energies, MDPI, vol. 13(6), pages 1-16, March.
    12. Omojaro, A.P. & Aldabbagh, L.B.Y., 2010. "Experimental performance of single and double pass solar air heater with fins and steel wire mesh as absorber," Applied Energy, Elsevier, vol. 87(12), pages 3759-3765, December.
    13. Aldabbagh, L.B.Y. & Egelioglu, F. & Ilkan, M., 2010. "Single and double pass solar air heaters with wire mesh as packing bed," Energy, Elsevier, vol. 35(9), pages 3783-3787.
    14. Rajarajeswari, K. & Sreekumar, A., 2016. "Matrix solar air heaters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 704-712.
    15. Rajaseenivasan, T. & Srinivasan, S. & Srithar, K., 2015. "Comprehensive study on solar air heater with circular and V-type turbulators attached on absorber plate," Energy, Elsevier, vol. 88(C), pages 863-873.
    16. Bacha, H.Ben & Damak, T. & Bouzguenda, M. & Maalej, A.Y., 2003. "Experimental validation of the distillation module of a desalination station using the SMCEC principle," Renewable Energy, Elsevier, vol. 28(15), pages 2335-2354.
    17. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    18. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    19. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    20. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:3159-3169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.