IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v241y2022ics0360544221031479.html
   My bibliography  Save this article

Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations

Author

Listed:
  • Salins, Sampath Suranjan
  • Reddy, S.V. Kota
  • Kumar, Shiva

Abstract

Excessive energy consumption has led to environmental problems and climate change. Cooling of the building is the key reason for energy consumption in hot regions. Due to the consistent sunlight intensity and high temperatures, the use of cooling units are inevitable. Single stage humidifiers are widely used which provided evaporative cooling consistently. Present work focuses on designing and fabricating a novel multistage reciprocating humidifier operated by a cam follower mechanism. Four packings are operating at four different positions in dynamic conditions. A theoretical model has been constructed to predict the thermal performance parameters using commercially available celdek packing 7090, 5090, honeycomb and corrugated. Theoretically predicted results agree with the experimental results with a maximum deviation of 2.1%., 4.8% and 8.6% for DBT, humidity ratio and saturation efficiency. Variation of the results is studied stage wise, and its change in performance is analyzed. Simulated results indicated that celdek 7090 outperformed the others in terms of change in dry bulb temperature, humidity ratio and saturation efficiency by 0.6%, 0.8% and 1.2% for the airflow rate of 5.6 m/s, respectively. Increasing the pad thickness showed improvement in the drop in dry bulb temperature, increased humidity ratio, and saturation efficiency. It is recommended to use zig-zag celdek 7090 type with 15 cm thickness in a multistage cooler to obtain the best performance for cooling applications in buildings with less cost.

Suggested Citation

  • Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031479
    DOI: 10.1016/j.energy.2021.122898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221031479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    2. Zhani, K. & Ben Bacha, H. & Damak, T., 2011. "Modeling and experimental validation of a humidification–dehumidification desalination unit solar part," Energy, Elsevier, vol. 36(5), pages 3159-3169.
    3. Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
    4. Guo Qianjian & Xiaoni Qi & Zheng Wei & Peng Sun, 2019. "An Analytical Approach to Wet Cooling Towers Based on Functional Analysis," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-9, December.
    5. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    6. Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
    7. Li, Yang & Huang, Xin & Peng, Hao & Ling, Xiang & Tu, ShanDong, 2018. "Simulation and optimization of humidification-dehumidification evaporation system," Energy, Elsevier, vol. 145(C), pages 128-140.
    8. Kabeel, A.E. & Hamed, Mofreh H. & Omara, Z.M. & Sharshir, S.W., 2014. "Experimental study of a humidification-dehumidification solar technique by natural and forced air circulation," Energy, Elsevier, vol. 68(C), pages 218-228.
    9. Eloy Velasco-Gómez & Ana Tejero-González & Javier Jorge-Rico & F. Javier Rey-Martínez, 2020. "Experimental Investigation of the Potential of a New Fabric-Based Evaporative Cooling Pad," Sustainability, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    2. Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
    3. Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
    4. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    5. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    7. Giwa, Adewale & Akther, Nawshad & Housani, Amna Al & Haris, Sabeera & Hasan, Shadi Wajih, 2016. "Recent advances in humidification dehumidification (HDH) desalination processes: Improved designs and productivity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 929-944.
    8. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    9. Sudaporn Sudprasert & Pornchai Jaroensen, 2021. "Study of the thermal performance of water-soaked porous wall under a tropical climate [Simulation study of applying thermal insulation in the condominium rooms to reduce cooling energy]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1453-1463.
    10. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    11. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    12. Uzair Sajjad & Imtiyaz Hussain & Muhammad Sultan & Sadaf Mehdi & Chi-Chuan Wang & Kashif Rasool & Sayed M. Saleh & Ashraf Y. Elnaggar & Enas E. Hussein, 2021. "Determining the Factors Affecting the Boiling Heat Transfer Coefficient of Sintered Coated Porous Surfaces," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    13. Nada, S.A. & Elattar, H.F. & Mahmoud, M.A. & Fouda, A., 2020. "Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers," Energy, Elsevier, vol. 211(C).
    14. El-Agouz, S.A. & Abd El-Aziz, G.B. & Awad, A.M., 2014. "Solar desalination system using spray evaporation," Energy, Elsevier, vol. 76(C), pages 276-283.
    15. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    16. Liu, Xuexiang & Liu, Haowen & Zhao, Xudong & Han, Zhonghe & Cui, Yu & Yu, Min, 2022. "A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP)," Energy, Elsevier, vol. 259(C).
    17. Lee, Sangkeum & Hong, Junhee & Har, Dongsoo, 2016. "Jointly optimized control for reverse osmosis desalination process with different types of energy resource," Energy, Elsevier, vol. 117(P1), pages 116-130.
    18. Li, Chennan & Goswami, D. Yogi & Shapiro, Andrew & Stefanakos, Elias K. & Demirkaya, Gokmen, 2012. "A new combined power and desalination system driven by low grade heat for concentrated brine," Energy, Elsevier, vol. 46(1), pages 582-595.
    19. Fan, Chengliang & Hinkelman, Kathryn & Fu, Yangyang & Zuo, Wangda & Huang, Sen & Shi, Chengnan & Mamaghani, Nasim & Faulkner, Cary & Zhou, Xiaoqing, 2021. "Open-source Modelica models for the control performance simulation of chiller plants with water-side economizer," Applied Energy, Elsevier, vol. 299(C).
    20. Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:241:y:2022:i:c:s0360544221031479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.