IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp128-140.html
   My bibliography  Save this article

Simulation and optimization of humidification-dehumidification evaporation system

Author

Listed:
  • Li, Yang
  • Huang, Xin
  • Peng, Hao
  • Ling, Xiang
  • Tu, ShanDong

Abstract

In this paper, a theoretical and experimental investigation on HDH evaporation system performance was performed. A fixed size HDH system was constructed, and for the purpose to obtain the optimal operating parameters, a mathematical model was proposed to investigate the effect of the operating parameters on the evaporation rate and specific steam consumption (SSC). The evaporation rate is proportional to three operating parameters. SSC decrease with the increase of heat recovery ratio (HRR) in regenerator. Moreover, the operating parameters of the system were optimized to obtain minimum SSC using the GlobalSearch algorithm. The minimum SSC is 0.338–0.398 kg per kg of evaporated water at different evaporation capacities. And the value of minimum SSC increases with an increase in the evaporation limit. Furthermore, the experimental results were compared with the optimized results, and they are in good agreement. Considering both the evaporation rate and SSC, the recommended operating parameters are: mg = 502.53 kg/h, ml = 3556.93 kg/h, Tlie = 83.59 °C.

Suggested Citation

  • Li, Yang & Huang, Xin & Peng, Hao & Ling, Xiang & Tu, ShanDong, 2018. "Simulation and optimization of humidification-dehumidification evaporation system," Energy, Elsevier, vol. 145(C), pages 128-140.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:128-140
    DOI: 10.1016/j.energy.2017.12.119
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421732162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.119?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muthusamy, C. & Srithar, K., 2017. "Energy saving potential in humidification-dehumidification desalination system," Energy, Elsevier, vol. 118(C), pages 729-741.
    2. He, W.F. & Zhang, X.K. & Han, D. & Gao, L., 2017. "Performance analysis of a water-power combined system with air-heated humidification dehumidification process," Energy, Elsevier, vol. 130(C), pages 218-227.
    3. Al-Sulaiman, Fahad A. & Prakash Narayan, G. & Lienhard, John H., 2013. "Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification–dehumidification system coupled with reverse osmosis," Applied Energy, Elsevier, vol. 103(C), pages 552-561.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Xin & Chen, Hu & Ling, Xiang & Liu, Lin & Huhe, Taoli, 2022. "Investigation of heat and mass transfer and gas–liquid thermodynamic process paths in a humidifier," Energy, Elsevier, vol. 261(PA).
    2. Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
    3. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    4. Huang, Xin & Ke, Tingfen & Yu, Xiangqian & Liu, Weihong & Li, Yang & Ling, Xiang, 2020. "Pressure drop modeling and performance optimization of a humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 258(C).
    5. Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lawal, Dahiru U. & Qasem, Naef A.A., 2020. "Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    2. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    3. Pavelka, Michal & Klika, Václav & Vágner, Petr & Maršík, František, 2015. "Generalization of exergy analysis," Applied Energy, Elsevier, vol. 137(C), pages 158-172.
    4. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Evaluation of a solar-powered spray-assisted low-temperature desalination technology," Applied Energy, Elsevier, vol. 211(C), pages 997-1008.
    5. Li, Guo-Pei & Zhang, Li-Zhi, 2016. "Investigation of a solar energy driven and hollow fiber membrane-based humidification–dehumidification desalination system," Applied Energy, Elsevier, vol. 177(C), pages 393-408.
    6. Chen, Q. & Ja, M. Kum & Li, Y. & Chua, K.J., 2019. "Energy, exergy and economic analysis of a hybrid spray-assisted low-temperature desalination/thermal vapor compression system," Energy, Elsevier, vol. 166(C), pages 871-885.
    7. Blanco-Marigorta, A.M. & Lozano-Medina, A. & Marcos, J.D., 2017. "A critical review of definitions for exergetic efficiency in reverse osmosis desalination plants," Energy, Elsevier, vol. 137(C), pages 752-760.
    8. Qureshi, Bilal Ahmed & Zubair, Syed M., 2015. "Exergetic analysis of a brackish water reverse osmosis desalination unit with various energy recovery systems," Energy, Elsevier, vol. 93(P1), pages 256-265.
    9. Mauro Luberti & Mauro Capocelli, 2023. "Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination," Energies, MDPI, vol. 16(17), pages 1-28, September.
    10. He, W.F. & Zhang, X.K. & Han, D. & Gao, L., 2017. "Performance analysis of a water-power combined system with air-heated humidification dehumidification process," Energy, Elsevier, vol. 130(C), pages 218-227.
    11. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    12. Mao, Yi & Zhang, Lei & Wan, Li & Stanford, Russell J., 2022. "Proposal and assessment of a novel power and freshwater production system for the heat recovery of diesel engine," Energy, Elsevier, vol. 240(C).
    13. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
    14. Li, Shuang-Fei & Liu, Zhen-Hua & Shao, Zhi-Xiong & Xiao, Hong-shen & Xia, Ning, 2018. "Performance study on a passive solar seawater desalination system using multi-effect heat recovery," Applied Energy, Elsevier, vol. 213(C), pages 343-352.
    15. Bait, Omar & Si-Ameur, Mohamed, 2017. "Tubular solar-energy collector integration: Performance enhancement of classical distillation unit," Energy, Elsevier, vol. 141(C), pages 818-838.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:128-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.