IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v11y2022i3ne423.html
   My bibliography  Save this article

Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution

Author

Listed:
  • Ana Tejero‐González
  • Antonio Franco‐Salas

Abstract

Evaporative cooling has a major role to play in fighting climate change and in achieving a low‐carbon economy. As it helps to reduce energy demand for air conditioning, it is gaining attention in terms of improving energy efficiency in buildings. Evaporative cooling from wetted media can enhance water–air contact, thereby improving heat and mass transfer further and avoiding aerosols. Wetted media are commonly called evaporative cooling pads and are widely used in greenhouses, intensive livestock farming, and industrial facilities. However, a deep understanding of evaporative cooling pad performance can enhance their application to indoor occupied spaces such as residential or commercial cooling, or in hybrid air conditioning systems. Most studies analyze pad performance mainly in terms of pressure drop and saturation effectiveness. However, some studies propose alternative cooling efficiency parameters and others provide insights into key aspects such as power requirements and the coefficient of performance, water consumption, risk of water entrainment, material decay, and air quality, as well as the effect of water temperature and salinity, solar radiation, or wind speed. Existing results on these less studied performance issues are reviewed, and we identify the gaps in the literature in addition to highlighting the main challenges encountered, in an effort to guide future researchers in the field and enhance the application of direct evaporative cooling. This article is categorized under: Energy Efficiency > Systems and Infrastructure Energy Systems Analysis > Systems and Infrastructure

Suggested Citation

  • Ana Tejero‐González & Antonio Franco‐Salas, 2022. "Direct evaporative cooling from wetted surfaces: Challenges for a clean air conditioning solution," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
  • Handle: RePEc:bla:wireae:v:11:y:2022:i:3:n:e423
    DOI: 10.1002/wene.423
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wene.423
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wene.423?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xu, J. & Li, Y. & Wang, R.Z. & Liu, W. & Zhou, P., 2015. "Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates," Applied Energy, Elsevier, vol. 138(C), pages 291-301.
    2. Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
    3. Nada, S.A. & Elattar, H.F. & Mahmoud, M.A. & Fouda, A., 2020. "Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers," Energy, Elsevier, vol. 211(C).
    4. Maria Alejandra Del Rio & Takashi Asawa & Yukari Hirayama, 2020. "Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space," Sustainability, MDPI, vol. 12(13), pages 1-22, July.
    5. Ulpiani, Giulia, 2019. "Water mist spray for outdoor cooling: A systematic review of technologies, methods and impacts," Applied Energy, Elsevier, vol. 254(C).
    6. Harby, K. & Al-Amri, Fahad, 2019. "An investigation on energy savings of a split air-conditioning using different commercial cooling pad thicknesses and climatic conditions," Energy, Elsevier, vol. 182(C), pages 321-336.
    7. Antonio Franco & Diego L. Valera & Araceli Peña, 2014. "Energy Efficiency in Greenhouse Evaporative Cooling Techniques: Cooling Boxes versus Cellulose Pads," Energies, MDPI, vol. 7(3), pages 1-21, March.
    8. Luis Pérez-Urrestarazu & Rafael Fernández-Cañero & Antonio Franco-Salas & Gregorio Egea, 2015. "Vertical Greening Systems and Sustainable Cities," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(4), pages 65-85, October.
    9. Francisco J. Rey Martínez & Julio F. San José Alonso & Eloy Velasco Gómez & Ana Tejero González & Paula M Esquivias & Javier M. Rey Hernández, 2020. "Energy Consumption Reduction of a Chiller Plant by Adding Evaporative Pads to Decrease Condensation Temperature," Energies, MDPI, vol. 13(9), pages 1-13, May.
    10. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Zeynab Emdadi & Nilofar Asim & Mohd Ambar Yarmo & Roslinda Shamsudin & Masita Mohammad & Kamaruzaman Sopian, 2016. "Green Material Prospects for Passive Evaporative Cooling Systems: Geopolymers," Energies, MDPI, vol. 9(8), pages 1-19, July.
    12. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    3. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    4. Salins, Sampath Suranjan & Kota Reddy, S.V. & Shiva Kumar,, 2021. "Experimental Investigation and Neural network based parametric prediction in a multistage reciprocating humidifier," Applied Energy, Elsevier, vol. 293(C).
    5. Cui, Xin & Yan, Weichao & Liu, Yilin & Zhao, Min & Jin, Liwen, 2020. "Performance analysis of a hollow fiber membrane-based heat and mass exchanger for evaporative cooling," Applied Energy, Elsevier, vol. 271(C).
    6. Cui, Xin & Yang, Chuanjun & Yan, Weichao & Zhang, Lianying & Wan, Yangda & Chua, Kian Jon, 2023. "Experimental study on a moisture-conducting fiber-assisted tubular indirect evaporative cooler," Energy, Elsevier, vol. 278(PB).
    7. Nada, S.A. & Elattar, H.F. & Mahmoud, M.A. & Fouda, A., 2020. "Performance enhancement and heat and mass transfer characteristics of direct evaporative building free cooling using corrugated cellulose papers," Energy, Elsevier, vol. 211(C).
    8. Xiao, Xin & Liu, Jinjin, 2024. "A state-of-art review of dew point evaporative cooling technology and integrated applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    9. Kumar, Shiva & Salins, Sampath Suranjan & Reddy, S.V. Kota & Nair, Prasanth Sreekumar, 2021. "Comparative performance analysis of a static & dynamic evaporative cooling pads for varied climatic conditions," Energy, Elsevier, vol. 233(C).
    10. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    11. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    12. Saedpanah, Ehsan & Pasdarshahri, Hadi, 2021. "Performance assessment of hybrid desiccant air conditioning systems: A dynamic approach towards achieving optimum 3E solution across the lifespan," Energy, Elsevier, vol. 234(C).
    13. Tomasz Jakubowski & Sedat Boyacı & Joanna Kocięcka & Atılgan Atılgan, 2024. "Determination of Performance of Different Pad Materials and Energy Consumption Values of Direct Evaporative Cooler," Energies, MDPI, vol. 17(12), pages 1-22, June.
    14. Antonio Franco-Salas & Araceli Peña-Fernández & Diego Luis Valera-Martínez, 2019. "Refrigeration Capacity and Effect of Ageing on the Operation of Cellulose Evaporative Cooling Pads, by Wind Tunnel Analysis," IJERPH, MDPI, vol. 16(23), pages 1-11, November.
    15. Yutong Tang & Fengyu Gao & Chen Wang & Merit M. Huang & Mabao Wu & Heng Li & Zhuo Li, 2023. "Vertical Greenery System (VGS) Renovation for Sustainable Arcade-Housing: Building Energy Efficiency Analysis Based on Digital Twin," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    16. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    17. Anna Zaręba & Alicja Krzemińska & Renata Kozik, 2021. "Urban Vertical Farming as an Example of Nature-Based Solutions Supporting a Healthy Society Living in the Urban Environment," Resources, MDPI, vol. 10(11), pages 1-18, October.
    18. Chiatti, Chiara & Fabiani, Claudia & Huang, Xinjie & Bou-Zeid, Elie & Pisello, Anna Laura, 2024. "Exploring the potential of phosphorescence for mitigating urban overheating: First time representation in an Urban Canopy Model," Applied Energy, Elsevier, vol. 362(C).
    19. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    20. Sudaporn Sudprasert & Pornchai Jaroensen, 2021. "Study of the thermal performance of water-soaked porous wall under a tropical climate [Simulation study of applying thermal insulation in the condominium rooms to reduce cooling energy]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(4), pages 1453-1463.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:11:y:2022:i:3:n:e423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.