IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp685-700.html
   My bibliography  Save this article

Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia

Author

Listed:
  • Choi, Youngjin

Abstract

This study evaluates the performance of liquid and air-based solar heating systems according to climatic conditions and the thermal insulation performance of buildings. The relationship between thermal energy demand and the effects of applying solar heating systems according to building characteristics is also clarified. The effectiveness of the solar heating system depends on the characteristics of the region and the building (heating energy demand and hot water energy demand depending on the outside temperature) and the amount of solar radiation in the target area. In particular, in the case of the air-based solar heating system, separate heat exchange is required to use as a hot water supply, and due to the heat loss generated therefrom. As a result, the effect of using indoor heating is greater than the effect of using hot water. Conversely, in the case of a liquid solar heating system, hot water can be used directly for hot water supply, but when used as radiant heating, efficiency is relatively reduced due to heat loss outside the target space. We examined the annual energy demand, the annual energy-saving amount via solar heat utilization and the energy-saving rate by a simulation of representative points of 88 climates in East Asia using solar heat utilization climate classification. The liquid-type solar heat collection system is suitable for solar heat utilization in areas where the hot water supply energy demand is approximately 34% or more of the annual energy demand in low-insulation houses. On the other hand, in high-insulation houses, the air-based solar heating system is more effective when hot water energy demand is less than 73% of the annual energy demand. The results of this study can be used as a basis for determining the solar heating system suitable for the target building, and it is considered that it leads to the result of increasing the solar utilization in the houses.

Suggested Citation

  • Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:685-700
    DOI: 10.1016/j.renene.2020.07.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Youngjin Choi, 2018. "An Experimental Study of the Solar Collection Performance of Liquid-Type Solar Collectors under Various Weather Conditions," Energies, MDPI, vol. 11(7), pages 1-13, June.
    2. Maraj, Altin & Londo, Andonaq & Gebremedhin, Alemayehu & Firat, Coskun, 2019. "Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions," Renewable Energy, Elsevier, vol. 140(C), pages 874-883.
    3. Abuşka, Mesut & Şevik, Seyfi & Kayapunar, Arif, 2019. "Comparative energy and exergy performance investigation of forced convection solar air collectors with cherry stone/powder," Renewable Energy, Elsevier, vol. 143(C), pages 34-46.
    4. Guldentops, Gert & Nejad, Alireza Mahdavi & Vuye, Cedric & Van den bergh, Wim & Rahbar, Nima, 2016. "Performance of a pavement solar energy collector: Model development and validation," Applied Energy, Elsevier, vol. 163(C), pages 180-189.
    5. Bouadila, Salwa & Kooli, Sami & Lazaar, Mariem & Skouri, Safa & Farhat, Abdelhamid, 2013. "Performance of a new solar air heater with packed-bed latent storage energy for nocturnal use," Applied Energy, Elsevier, vol. 110(C), pages 267-275.
    6. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    7. Cruz, Talita & Schaeffer, Roberto & Lucena, André F.P. & Melo, Sérgio & Dutra, Ricardo, 2020. "Solar water heating technical-economic potential in the household sector in Brazil," Renewable Energy, Elsevier, vol. 146(C), pages 1618-1639.
    8. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    9. Bahrehmand, D. & Ameri, M. & Gholampour, M., 2015. "Energy and exergy analysis of different solar air collector systems with forced convection," Renewable Energy, Elsevier, vol. 83(C), pages 1119-1130.
    10. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    11. Kalogirou, S.A. & Agathokleous, R. & Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2019. "Development and validation of a new TRNSYS Type for thermosiphon flat-plate solar thermal collectors: energy and economic optimization for hot water production in different climates," Renewable Energy, Elsevier, vol. 136(C), pages 632-644.
    12. Hossain, M.S. & Saidur, R. & Fayaz, H. & Rahim, N.A. & Islam, M.R. & Ahamed, J.U. & Rahman, M.M., 2011. "Review on solar water heater collector and thermal energy performance of circulating pipe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3801-3812.
    13. López-Ochoa, Luis M. & Verichev, Konstantin & Las-Heras-Casas, Jesús & Carpio, Manuel, 2019. "Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile," Energy, Elsevier, vol. 188(C).
    14. Demou, A.D. & Grigoriadis, D.G.E., 2018. "1D model for the energy yield calculation of natural convection solar air collectors," Renewable Energy, Elsevier, vol. 119(C), pages 649-661.
    15. Bahria, Sofiane & Amirat, Madjid & Hamidat, Abderrahmen & El Ganaoui, Mohammed & El Amine Slimani, Mohamed, 2016. "Parametric study of solar heating and cooling systems in different climates of Algeria – A comparison between conventional and high-energy-performance buildings," Energy, Elsevier, vol. 113(C), pages 521-535.
    16. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    18. Jia, Hao & Cheng, Xiaomei & Zhu, Jingjing & Li, Zhaoling & Guo, Jiansheng, 2018. "Mathematical and experimental analysis on solar thermal energy harvesting performance of the textile-based solar thermal energy collector," Renewable Energy, Elsevier, vol. 129(PA), pages 553-560.
    19. Youngjin Choi & Hyun Bae Kim, 2019. "Climate Classification for the Use of Solar Thermal Systems in East Asia," Energies, MDPI, vol. 12(12), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tianhu & Wang, Fuxi & Gao, Yi & Liu, Yuanjun & Guo, Qiang & Zhao, Qingxin, 2023. "Optimization of a solar-air source heat pump system in the high-cold and high-altitude area of China," Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    2. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    4. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    5. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    6. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    7. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    8. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    9. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    10. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    11. Gao, Meng & Fan, Jianhua & Furbo, Simon & Xiang, Yutong, 2022. "Energy and exergy analysis of a glazed solar preheating collector wall with non-uniform perforated corrugated plate," Renewable Energy, Elsevier, vol. 196(C), pages 1048-1063.
    12. Youngjin Choi & Hyun Bae Kim, 2021. "Analysis of Solar Energy Utilization Effect of Air-Based Photovoltaic/Thermal System," Energies, MDPI, vol. 14(24), pages 1-11, December.
    13. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Liang, Lin & Wang, Tengyue, 2019. "Thermal performance investigation of an integrated collector–storage solar air heater on the basis of lap joint-type flat micro-heat pipe arrays: Simultaneous charging and discharging mode," Energy, Elsevier, vol. 181(C), pages 882-896.
    14. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2023. "Multi-objective optimization for comparative energy and economic analyses of a novel evacuated solar collector prototype (ICSSWH) under different weather conditions," Renewable Energy, Elsevier, vol. 210(C), pages 701-714.
    15. Barone, Giovanni & Buonomano, Annamaria & Kalogirou, Soteris & Ktistis, Panayiotis & Palombo, Adolfo, 2024. "A holistic methodology for designing novel flat plate evacuated solar thermal collectors: Modelling and experimental assessment," Renewable Energy, Elsevier, vol. 232(C).
    16. Mortazavi, Arsham & Ameri, Mehran, 2018. "Conventional and advanced exergy analysis of solar flat plate air collectors," Energy, Elsevier, vol. 142(C), pages 277-288.
    17. Barone, G. & Buonomano, A. & Palmieri, V. & Palombo, A., 2022. "A prototypal high-vacuum integrated collector storage solar water heater: Experimentation, design, and optimization through a new in-house 3D dynamic simulation model," Energy, Elsevier, vol. 238(PC).
    18. Wang, Yang & Shukla, Ashish & Liu, Shuli, 2017. "A state of art review on methodologies for heat transfer and energy flow characteristics of the active building envelopes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1102-1116.
    19. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    20. Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:685-700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.