IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p1791-d1038892.html
   My bibliography  Save this article

Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets

Author

Listed:
  • Baibhaw Kumar

    (Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515 Miskolc, Hungary)

  • Gábor Szepesi

    (Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515 Miskolc, Hungary)

  • Zoltán Szamosi

    (Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515 Miskolc, Hungary)

  • Gyula Krámer

    (Institute of Energy Engineering and Chemical Machinery, University of Miskolc, 3515 Miskolc, Hungary)

Abstract

The future of conventional fuels has limited sustainability and creates disquietude because of the ubiquitous energy crisis worldwide. The judicious use of biomass or wood-based fuels is inevitable. The quality of wood fuels depends on the moisture content, and subsequently, solar drying solutions can play a vital role in adequately storing and controlling moisture in the fuels. In the present study, a novel forced convection cabinet-type solar dryer was developed and investigated for its thermal performance. An artificial neural network (ANN model) was created to predict the final moisture content of the drying system. The drying behavior of three distinct wood fuels, i.e., woodchips, sawdust, and pellets, was kept under observation to plot the drying curve based on their calculated moisture ratio. The dryer reached a maximum temperature of 60 °C while maintaining a temperature gradient of 10–20 °C. The maximum thermal energy and exergy efficiency was recorded as 55% and 51.1%, respectively. The ANN-optimized model was found suitable with reasonable values of coefficient of correlation (R) for the model.

Suggested Citation

  • Baibhaw Kumar & Gábor Szepesi & Zoltán Szamosi & Gyula Krámer, 2023. "Analysis of a Combined Solar Drying System for Wood-Chips, Sawdust, and Pellets," Sustainability, MDPI, vol. 15(3), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1791-:d:1038892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/1791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/1791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bahrehmand, D. & Ameri, M. & Gholampour, M., 2015. "Energy and exergy analysis of different solar air collector systems with forced convection," Renewable Energy, Elsevier, vol. 83(C), pages 1119-1130.
    2. Kurtbas, İrfan & Durmus̨, Aydın, 2004. "Efficiency and exergy analysis of a new solar air heater," Renewable Energy, Elsevier, vol. 29(9), pages 1489-1501.
    3. Luis Bernardo López-Sosa & José Núñez-González & Alberto Beltrán & Mario Morales-Máximo & Mario Morales-Sánchez & Montserrat Serrano-Medrano & Carlos A. García, 2019. "A New Methodology for the Development of Appropriate Technology: A Case Study for the Development of a Wood Solar Dryer," Sustainability, MDPI, vol. 11(20), pages 1-20, October.
    4. Alakoski, Esa & Jämsén, Miia & Agar, David & Tampio, Elina & Wihersaari, Margareta, 2016. "From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 376-383.
    5. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    6. Baibhaw Kumar & Gábor Szepesi & Zsolt Čonka & Michal Kolcun & Zsolt Péter & László Berényi & Zoltán Szamosi, 2021. "Trendline Assessment of Solar Energy Potential in Hungary and Current Scenario of Renewable Energy in the Visegrád Countries for Future Sustainability," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    7. Bahrehmand, D. & Ameri, M., 2015. "Energy and exergy analysis of different solar air collector systems with natural convection," Renewable Energy, Elsevier, vol. 74(C), pages 357-368.
    8. Tarek Kh. Abdelkader & Qizhou Fan & Eid S. Gaballah & Shaowei Wang & Yanlin Zhang, 2020. "Energy and Exergy Analysis of a Flat-Plate Solar Air Heater Artificially Roughened and Coated with a Novel Solar Selective Coating," Energies, MDPI, vol. 13(4), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    2. Kalaiarasi, G. & Velraj, R. & Swami, Muthusamy V., 2016. "Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage," Energy, Elsevier, vol. 111(C), pages 609-619.
    3. Kalogirou, Soteris A. & Karellas, Sotirios & Badescu, Viorel & Braimakis, Konstantinos, 2016. "Exergy analysis on solar thermal systems: A better understanding of their sustainability," Renewable Energy, Elsevier, vol. 85(C), pages 1328-1333.
    4. Kareem, M.W. & Habib, Khairul & Ruslan, M.H. & Saha, Bidyut Baran, 2017. "Thermal performance study of a multi-pass solar air heating collector system for drying of Roselle (Hibiscus sabdariffa)," Renewable Energy, Elsevier, vol. 113(C), pages 281-292.
    5. Zheng, Jiayi & Wang, Jing & Chen, Taotao & Yu, Yanshun, 2020. "Solidification performance of heat exchanger with tree-shaped fins," Renewable Energy, Elsevier, vol. 150(C), pages 1098-1107.
    6. Arabhosseini, Akbar & Samimi-Akhijahani, Hadi & Motahayyer, Mehrnosh, 2019. "Increasing the energy and exergy efficiencies of a collector using porous and recycling system," Renewable Energy, Elsevier, vol. 132(C), pages 308-325.
    7. Yao, Muchi & Li, Ming & Wang, Yunfeng & Li, Guoliang & Zhang, Ying & Gao, Meng & Deng, Zhihan & Xing, Tianyu & Zhang, Zude & Zhang, Wenxiang, 2023. "Analysis on characteristics and operation mode of direct solar collector coupled heat pump drying system," Renewable Energy, Elsevier, vol. 206(C), pages 223-238.
    8. Ural, Tolga, 2019. "Experimental performance assessment of a new flat-plate solar air collector having textile fabric as absorber using energy and exergy analyses," Energy, Elsevier, vol. 188(C).
    9. Xu, Wei & Liu, Changping & Li, Angui & Li, Ji & Qiao, Biao, 2020. "Feasibility and performance study on hybrid air source heat pump system for ultra-low energy building in severe cold region of China," Renewable Energy, Elsevier, vol. 146(C), pages 2124-2133.
    10. Rabha, D.K. & Muthukumar, P. & Somayaji, C., 2017. "Energy and exergy analyses of the solar drying processes of ghost chilli pepper and ginger," Renewable Energy, Elsevier, vol. 105(C), pages 764-773.
    11. Liu, He & Tian, You & Liu, Jia'ao & Zhang, Dongwei & Wu, Xuehong & Li, Zengyao, 2023. "Performance analysis of solar drying system with sunlight transparent thermally insulating aerogels," Energy, Elsevier, vol. 269(C).
    12. Naik, B. Kiran & Bhowmik, Mrinal & Muthukumar, P., 2019. "Experimental investigation and numerical modelling on the performance assessments of evacuated U – Tube solar collector systems," Renewable Energy, Elsevier, vol. 134(C), pages 1344-1361.
    13. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    14. Rai, Shalini & Chand, Prabha & Sharma, S.P., 2018. "Evaluation of thermo hydraulic effect on offset finned absorber solar air heater," Renewable Energy, Elsevier, vol. 125(C), pages 39-54.
    15. Camilo Ramirez & Mario Palacio & Mauricio Carmona, 2020. "Reduced Model and Comparative Analysis of the Thermal Performance of Indirect Solar Dryer with and without PCM," Energies, MDPI, vol. 13(20), pages 1-18, October.
    16. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    17. Gao, Meng & Fan, Jianhua & Furbo, Simon & Xiang, Yutong, 2022. "Energy and exergy analysis of a glazed solar preheating collector wall with non-uniform perforated corrugated plate," Renewable Energy, Elsevier, vol. 196(C), pages 1048-1063.
    18. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    19. Choi, Youngjin, 2020. "Performance evaluation of air and liquid-based solar heating systems in various climates in East Asia," Renewable Energy, Elsevier, vol. 162(C), pages 685-700.
    20. Kareem, M.W. & Habib, Khairul & Sopian, K. & Ruslan, M.H., 2017. "Multi-pass solar air heating collector system for drying of screw-pine leaf (Pandanus tectorius)," Renewable Energy, Elsevier, vol. 112(C), pages 413-424.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:1791-:d:1038892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.