IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i3p2113-d1044323.html
   My bibliography  Save this article

Portfolio Analysis of Clean Energy Vehicles in Japan Considering Copper Recycling

Author

Listed:
  • Jun Osawa

    (Department Management Systems, College of Informatics and Human Communication, Kanazawa Institute of Technology, Nonoichi 921-8501, Japan)

Abstract

Several countries are moving toward carbon neutrality to mitigate climate change. The introduction of clean energy vehicles (CEVs) is a measure to offset the adverse effects of global warming. However, each CEV has its strengths and weaknesses. An optimal CEV portfolio must be formulated to create effective policies that promote innovative technologies and introduce them into the market. CEVs also consume more copper than gasoline vehicles. Copper is associated with supply risks, which most previous conventional studies have failed to address. Therefore, this study proposes a novel CEV optimization model for sustainable consumption of copper resources through recycling along with reduction of CO 2 emissions. This study aims to analyze the optimal portfolio for domestic passenger vehicles and the assumed effects of copper recycling and usage reduction. For this analysis, this study set up scenarios for the recycling rate of copper contained in end-of-life vehicles and the reduction rate of copper used in newly sold vehicles. Our simulation results showed that increased recycling rates and reduced use of copper are necessary for the diffusion of battery electric vehicles. Furthermore, the simulation results indicated that if these improvements are not implemented, the deployment of fuel cell vehicles needs to be accelerated.

Suggested Citation

  • Jun Osawa, 2023. "Portfolio Analysis of Clean Energy Vehicles in Japan Considering Copper Recycling," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2113-:d:1044323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/3/2113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/3/2113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yeh, Sonia & Farrell, Alexander E. & Plevin, Richard J & Sanstad, Alan & Weyant, John, 2008. "Optimizing U.S. Mitigation Strategies for the Light-Duty Transportation Sector: What We Learn from a Bottom-Up Model," Institute of Transportation Studies, Working Paper Series qt1td1g7qw, Institute of Transportation Studies, UC Davis.
    2. Ichinohe, Masayuki & Endo, Eiichi, 2006. "Analysis of the vehicle mix in the passenger-car sector in Japan for CO2 emissions reduction by a MARKAL model," Applied Energy, Elsevier, vol. 83(10), pages 1047-1061, October.
    3. Yang Li & Shiyu Huang & Yanhui Liu & Yiyi Ju, 2021. "Recycling Potential of Plastic Resources from End-of-Life Passenger Vehicles in China," IJERPH, MDPI, vol. 18(19), pages 1-15, September.
    4. Yang Li & Kiyoshi Fujikawa & Junbo Wang & Xin Li & Yiyi Ju & Chenyi Chen, 2020. "The Potential and Trend of End-Of-Life Passenger Vehicles Recycling in China," Sustainability, MDPI, vol. 12(4), pages 1-13, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    2. Jun Osawa, 2024. "Evaluation of Technological Configurations of Residential Energy Systems Considering Bidirectional Power Supply by Vehicles in Japan," Energies, MDPI, vol. 17(7), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    2. van Vliet, Oscar & van den Broek, Machteld & Turkenburg, Wim & Faaij, André, 2011. "Combining hybrid cars and synthetic fuels with electricity generation and carbon capture and storage," Energy Policy, Elsevier, vol. 39(1), pages 248-268, January.
    3. Bahn, Olivier & Marcy, Mathilde & Vaillancourt, Kathleen & Waaub, Jean-Philippe, 2013. "Electrification of the Canadian road transportation sector: A 2050 outlook with TIMES-Canada," Energy Policy, Elsevier, vol. 62(C), pages 593-606.
    4. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    5. Howard, B. & Waite, M. & Modi, V., 2017. "Current and near-term GHG emissions factors from electricity production for New York State and New York City," Applied Energy, Elsevier, vol. 187(C), pages 255-271.
    6. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    7. Shmelev, Stanislav E. & van den Bergh, Jeroen C.J.M., 2016. "Optimal diversity of renewable energy alternatives under multiple criteria: An application to the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 679-691.
    8. Anandarajah, Gabrial & Strachan, Neil, 2010. "Interactions and implications of renewable and climate change policy on UK energy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 6724-6735, November.
    9. Timilsina, Govinda R. & Dulal, Hari B., 2008. "Fiscal policy instruments for reducing congestion and atmospheric emissions in the transport sector : a review," Policy Research Working Paper Series 4652, The World Bank.
    10. O'Rear, Eric G. & Sarica, Kemal & Tyner, Wallace E., 2015. "Analysis of impacts of alternative policies aimed at increasing US energy independence and reducing GHG emissions," Transport Policy, Elsevier, vol. 37(C), pages 121-133.
    11. Stefan N. Petrović & Oleksandr Diachuk & Roman Podolets & Andrii Semeniuk & Fabian Bühler & Rune Grandal & Mourad Boucenna & Olexandr Balyk, 2021. "Exploring the Long-Term Development of the Ukrainian Energy System," Energies, MDPI, vol. 14(22), pages 1-20, November.
    12. Anandarajah, Gabrial & McDowall, Will, 2012. "What are the costs of Scotland's climate and renewable policies?," Energy Policy, Elsevier, vol. 50(C), pages 773-783.
    13. Chung, Whan-Sam & Tohno, Susumu & Shim, Sang Yul, 2009. "An estimation of energy and GHG emission intensity caused by energy consumption in Korea: An energy IO approach," Applied Energy, Elsevier, vol. 86(10), pages 1902-1914, October.
    14. Nagatomo, Yu & Ozawa, Akito & Kudoh, Yuki & Hondo, Hiroki, 2021. "Impacts of employment in power generation on renewable-based energy systems in Japan— Analysis using an energy system model," Energy, Elsevier, vol. 226(C).
    15. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2015. "Heat recovery using heat pumps in non-energy intensive industry: Are Energy Saving Certificates a solution for the food and drink industry in France?," Applied Energy, Elsevier, vol. 156(C), pages 374-389.
    16. Seck, Gondia Sokhna & Guerassimoff, Gilles & Maïzi, Nadia, 2013. "Heat recovery with heat pumps in non-energy intensive industry: A detailed bottom-up model analysis in the French food & drink industry," Applied Energy, Elsevier, vol. 111(C), pages 489-504.
    17. Dodder, Rebecca S. & Kaplan, P. Ozge & Elobeid, Amani & Tokgoz, Simla & Secchi, Silvia & Kurkalova, Lyubov A., 2015. "Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach," Energy Economics, Elsevier, vol. 51(C), pages 77-87.
    18. Thiel, Christian & Nijs, Wouter & Simoes, Sofia & Schmidt, Johannes & van Zyl, Arnold & Schmid, Erwin, 2016. "The impact of the EU car CO2 regulation on the energy system and the role of electro-mobility to achieve transport decarbonisation," Energy Policy, Elsevier, vol. 96(C), pages 153-166.
    19. Mustapa, Siti Indati & Bekhet, Hussain Ali, 2016. "Analysis of CO2 emissions reduction in the Malaysian transportation sector: An optimisation approach," Energy Policy, Elsevier, vol. 89(C), pages 171-183.
    20. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:3:p:2113-:d:1044323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.